ERS Charts of Note

Subscribe to get highlights from our current and past research, Monday through Friday, or see our privacy policy.
See also: Editor’s Pick 2016: Best of Charts of Note gallery.

Reset

Some manure nutrients produced in the Chesapeake Bay watershed can be captured for later use

Friday, September 30, 2016

In 2010, to help meet water quality goals, the U.S. Environmental Protection Agency (EPA) adopted a limit on the amount of pollutants that the Chesapeake Bay can receive. Nitrogen and phosphorus, in particular, can lead to adverse effects on public health, recreation, and ecosystems when present in excess amounts. The EPA estimates that applications of manure contribute 15 percent of nitrogen and 37 percent of phosphorus loadings to the Bay. Furthermore, ERS estimates that animal feeding operations (AFOs), which raise animals in confinement, account for 88 percent of manure nitrogen and 84 percent of manure phosphorus generation in that watershed. ERS also estimates that about a third of nitrogen and half of phosphorus produced at AFOs can be recovered for later use. That adds to about 234 million pounds of nitrogen and 106 million pounds of phosphorus recovered. These nutrients can then be redistributed regionally to fertilize agricultural land, thereby lessening nutrient run-off problems in the Bay. The remaining nutrients cannot be recovered. Both nitrogen and phosphorus may be lost during collection, storage, and transportation; nitrogen may also volatize into the atmosphere. This chart is based on the ERS report Comparing Participation in Nutrient Trading by Livestock Operations to Crop Producers in the Chesapeake Bay Watershed, released in September 2016.

Climate change is projected to cause declines and shifts in fieldcrop acreage across U.S. regions

Friday, September 9, 2016

Climate models predict U.S. agriculture will face changes in local patterns of precipitation and temperature over the next century. These climate changes will affect crop yields, crop-water demand, water-supply availability, farmer livelihoods, and consumer welfare. Using projections of temperature and precipitation under nine different scenarios, ERS research projects that climate change will result in a decline in national fieldcrop acreage in 2080 when measured relative to a scenario that assumes continuation of reference climate conditions (precipitation and temperature patterns averaged over 2001-08). Acreage trends show substantial variability across climate change scenarios and regions. When averaged over all climate scenarios, total acreage in the Mountain States, Pacific, and Southern Plains is projected to expand, while acreage in other regions--most notably the Corn Belt and Northern Plains--declines. Over half of all fieldcrop acreage in the U.S. is found in the Corn Belt and Northern Plains, and projected declines in these regions represent 2.1 percent of their combined acreage. Irrigated acreage for all regions is projected to decline, but in some regions increases in dryland acreage offset irrigated acreage losses. The acreage response reflects projected changes in regional irrigation supply as well as differential yield impacts and shifts in relative profitability across crops and production practices under the climate change scenarios. This chart is from the ERS report Climate Change, Water Scarcity, and Adaptation in the U.S. Fieldcrop Sector, November 2015.

Rural counties drive the 2000-11 growth in U.S. onshore production of oil and natural gas

Thursday, September 1, 2016

From 2000 to 2011, onshore gross withdrawals of natural gas in the lower 48 States increased by about 47 percent, reaching historic highs in every year after 2006. Over the same period, withdrawals of oil increased by 11 percent, with much of that growth occurring between 2007 and 2011. Rural counties (nonmetro noncore) accounted for almost all of the growth in oil production and a large share of the growth in gas production based on newly released data from ERS on County-level Oil and Gas Production in the U.S.? While just over 35 percent of counties in the lower 48 States reported some level of oil or natural gas production during 2000-11, sizeable changes in production levels were more concentrated. Interestingly, the number of counties with an increase in oil and gas production of $20 million or more over the decade (218 counties) was nearly the same as the number (212) with a decrease of $20 million or more. This map is found in the Documentation and Maps page of the data product County-level Oil and Gas Production in the U.S., and also in the Amber Waves article, "Onshore Oil and Gas Development in the Lower 48 States: Introducing a County-Level Database of Production for 2000-2011."

Agriculture accounted for 10 percent of U.S. greenhouse gas emissions in 2014

Thursday, September 1, 2016

Agriculture accounted for an estimated 10 percent of U.S. greenhouse gas (GHG) emissions in 2014. In agriculture, crop and livestock activities are important sources of nitrous oxide and methane emissions, notably from fertilizer application, enteric fermentation (a normal digestive process in animals that produces methane), and manure storage and management. GHG emissions from agriculture have increased by approximately 10 percent since 1990. During this time period, total U.S. GHG emissions increased approximately 7 percent. This chart is from the Land and Natural Resources section of ERS?s Ag and Food Statistics: Charting the Essentials data product.

Per-cow milk production is lower in hot climates

Thursday, September 1, 2016

Above a temperature threshold, an animal may experience heat stress, which results in changes in its respiration, blood chemistry, hormones, metabolism, and feed intake. Depending on the species, high temperatures can reduce meat and milk production and lower animal reproduction rates. Dairy cattle are particularly sensitive to heat stress; experiments have shown that high temperatures lower milk output and reduce the percentages of fat, solids, lactose, and protein in milk. A 2010 USDA survey of dairy farmers shows how climate influences milk production in practice.? For small, medium and large dairies, milk output per cow was lower in areas with high heat stress compared to areas with low or medium heat stress.? In much of the United States, climate change is likely to result in higher average temperatures, hotter daily maximum temperatures, and more frequent heat waves. Such changes could increase heat stress and lower milk production, unless new technologies are developed and adopted that counteract the effects of a warner climate. This chart is based on data found in the ERS report, Climate Change, Heat Stress, and Dairy Production, ERR-175, September 2014.

Climate change is projected to cause declines and shifts in fieldcrop acreage across the United States

Wednesday, February 17, 2016

ERS research projects that climate change will result in a decline in national fieldcrop acreage over analysis years 2020, 2040, 2060, and 2080, when measured relative to a scenario that assumes continuation of reference climate conditions (precipitation and temperature patterns averaged over 2001-08). Acreage trends are explored for nine climate change scenarios, and substantial variability exists across climate change scenarios and crop sectors. When averaged over all climate scenarios, U.S. acreage in rice, hay, and cotton is projected to expand, while acreage in corn, soybeans, sorghum, wheat, and silage declines. Acreage response varies across crops as a function of the sensitivity of crop yields to changes in precipitation, temperature, and atmospheric carbon dioxide; the resulting changes in relative crop profitability; the coincidence of climatic shifts with geographic patterns of crop production; and variables related to the extent of crop reliance on irrigation. This chart is from the ERS report Climate Change, Water Scarcity, and Adaptation in the U.S. Fieldcrop Sector, November 2015.

More efficient irrigation methods are being adopted on farmland in the Western United States

Wednesday, January 6, 2016

About 75 percent of irrigated cropland in the United States is located in the 17 western-most contiguous States, based on USDA's 2013 Farm and Ranch Irrigation Survey (the most recent available). Between 1984 and 2013, while the amount of irrigated land in the West has remained fairly stable (at about 40 million acres) and the amount of water applied has been mostly flat (between 70 and 76 million acre-feet per year), the use of more efficient irrigation systems to deliver the water has increased. In 1984, 71 percent of Western crop irrigation water was applied using gravity irrigation systems that tend to use water inefficiently. By 2013, operators used gravity systems to apply just 41 percent of water for crop production, while pressure-sprinkler irrigation systems (including drip, low-pressure sprinkler, or low-energy precision application systems), which can apply water more efficiently, accounted for 59 percent of irrigation water use and about 60 percent of irrigated acres. This chart is found in the ERS topic page on Irrigation & Water Use, updated October 2015.

Dairy production is concentrated in climates that expose animals to less heat stress

Wednesday, July 8, 2015

Above a temperature threshold, an animal may experience heat stress resulting in changes in its respiration, blood chemistry, hormones, metabolism, and feed intake. Dairy cattle are particularly sensitive to heat stress; high temperatures lower milk output and reduce the percentages of fat, solids, lactose, and protein in milk. In the United States, dairy production is largely concentrated in climates that expose animals to less heat stress. The Temperature Humidity Index (THI) load provides a measure of the amount of heat stress an animal is under. The annual THI load is similar to “cooling degree days,” a concept often used to convey the amount of energy needed to cool a building in the summer. The map shows concentrations of dairy cows in regions with relatively low levels of heat stress: California’s Central Valley, Idaho, Wisconsin, New York, and Pennsylvania. Relatively few dairies are located in the very warm Gulf Coast region (which includes southern Texas, Louisiana, Mississippi, Alabama, and Florida). This map is drawn from Climate Change, Heat Stress, and Dairy Production, ERR-175, September 2014.

U.S. public sector plays a key role in collecting, conserving, and distributing crop genetic resources

Monday, June 22, 2015

As agriculture adapts to climate change, crop genetic resources can be used to develop new plant varieties that are more tolerant of changing environmental conditions. Crop genetic resources (or germplasm) consist of seeds, plants, or plant parts that can be used in crop breeding, research, or conservation. The public sector plays an important role in collecting, conserving, and distributing crop genetic resources because private-sector incentives for crucial parts of these activities are limited. The U.S. National Plant Germplasm System (NPGS) is the primary network that manages publicly held crop germplasm in the United States. Since 2003, demand for crop genetic resources from the NPGS has increased rapidly even as the NPGS budget has declined in real dollars. By way of comparison, the NPGS budget of approximately $47 million in 2012 was well under one-half of 1 percent of the U.S. seed market (measured as the value of farmers’ purchased seed) which exceeded $20 billion for the same year. This chart updates ones found in the June 2015 Amber Waves feature, Crop Genetic Resources May Play an Increasing Role in Agricultural Adaptation to Climate Change.

Maintaining and restoring wetlands could remove nitrogen cost effectively over much of the Upper Mississippi and Ohio River watersheds

Monday, June 1, 2015

Every year, agriculture contributes an estimated 60-80 percent of delivered nitrogen and 49-60 percent of delivered phosphorous in the Gulf of Mexico. Nitrogen in waters can cause rapid and dense growth of algae and aquatic plants, leading to degradation in water quality as found in the hypoxic zone of the Gulf of Mexico, where excess nutrients have depleted oxygen needed to support marine life. Nitrogen removal is one of the many benefits of wetlands. An ERS analysis found that on an annual basis, the amount of nitrogen removed per dollar spent to restore and preserve a new wetland ranged from 0.15 to 34 pounds within the area of study (the Upper Mississippi/Ohio River watershed), or a range of $0.03 to $7.00 per pound of nitrogen removed. Restoring and protecting wetlands in the very productive corn-producing areas of Illinois, Indiana, and Ohio tends to be more cost effective than elsewhere in the study area. The study suggests that if nitrogen reduction was the only environmental goal, these corn-producing areas would be a good place to restore wetlands. Hydrologic conditions in the Upper Mississippi and Ohio River watersheds are unique, so the cost effectiveness of wetlands elsewhere is uncertain. This map is found in the ERS report, Targeting Investments To Cost Effectively Restore and Protect Wetland Ecosystems: Some Economic Insights, ERR-183, February 2015.

Agriculture accounts for 10 percent of U.S. greenhouse gas emissions

Wednesday, May 27, 2015

Agriculture accounted for about 10 percent of U.S. greenhouse gas (GHG) emissions in 2013. Since agricultural production accounts for only about 1 percent of U.S. gross domestic product (GDP), it is a disproportionately GHG-intensive activity. In agriculture, crop and livestock activities are unique sources of nitrous oxide and methane emissions, notably from soil nutrient management, enteric fermentation (a normal digestive process in animals that produces methane), and manure management. GHG emissions from agriculture have increased by approximately 17 percent since 1990. During this time period, total U.S. GHG emissions increased approximately 6 percent. This chart is from the Land and Natural Resources section of ERS’s Ag and Food Statistics: Charting the Essentials data product.

Costs of restoring and preserving wetlands vary across the United States

Friday, April 10, 2015

USDA’s costs of restoring and preserving new wetlands across the contiguous United States range from about $170 to $6,100 per acre, with some of the lowest costs in western North Dakota and eastern Montana and the highest in major corn-producing areas and western Washington and Oregon. To analyze conservation program expenditures, ERS researchers generated county-level estimates of wetland costs for each of the major wetland regions as designated by USDA’s Natural Resources Conservation Service (outlined in black in the map), using primarily NRCS Wetland Reserve Program contract data. Variations in costs are driven by differences in land values and the complexity of restoring hydrology and wetland ecosystems. Information about how the costs of restoring and preserving wetlands vary spatially (together with the relative benefits) can inform wetland targeting policies within States/regions and across the U.S. This map is found in the ERS report, Targeting Investments to Cost Effectively Restore and Protect Wetland Ecosystems: Some Economic Insights, ERR-183, February 2015.

Charts of Note header image for left nav