ERS Charts of Note

Subscribe to get highlights from our current and past research, Monday through Friday, or see our privacy policy.

Get the latest charts via email, or on our mobile app for Download the Charts of Note app on Google Play and Download the Charts of Note app on the App Store

Reset

No-till adoption slows for some crops

Friday, November 23, 2018

Conservation tillage reduces soil disturbance and keeps soil covered, thereby conserving soil moisture and lessening erosion. When used in conjunction with other practices, it can also help promote soil health. No-till, a type of conservation tillage where farmers plant directly into remaining crop residue without tilling, accounted for the majority of conservation tillage acreage for wheat (45 percent of total acres) in 2017 and soybeans (40 percent of total acres) in 2012. ERS researchers found that adoption of no-till, in general, increased from 2000 to 2007—particularly for wheat (2004-2009) and soybeans (2002-2006). In later periods, no-till adoption increased more slowly for wheat (2009-2017) and may have declined for soybeans (2006-2012) and cotton (2007-2015). Data for corn indicate only modest gains in adoption of no-till between 2005 and 2016. This chart appears in the ERS report, Tillage Intensity and Conservation Cropping in the United States, released in September 2018.

Conservation tillage is used on a majority of U.S. corn, soybean, and wheat acres

Friday, September 28, 2018

Conservation tillage helps protect soil by reducing soil disturbance and keeping the soil covered. These actions conserve soil moisture, reduce soil erosion, and, when used in conjunction with other practices, can help promote soil health. Healthy soils can improve environmental outcomes and benefit farmers. For example, greater rainfall infiltration and soil water-holding capacity can reduce runoff of sediment and nutrients while increasing drought resilience. Based on the most recent surveys, conservation tillage was used on a majority of wheat (67 percent), corn (65 percent), and soybeans (70 percent). However, conservation tillage was used on just 40 percent of cotton acres. No-till production, a type of conservation tillage where farmers plant directly into remaining crop residue without tilling, accounted for the majority of conservation tillage acres on wheat (45 percent of total acres) and soybeans (40 percent). Almost 50 percent of corn, soybean, wheat, and cotton acreage was in no-till or strip-till—a mulch till method where tillage occurs in a narrow strip where seeds are planted—at some time over a 4-year period (the survey year and 3 previous years). However, only about 20 percent of these acres were in no-till or strip-till all 4 years. This chart appears in the ERS report, Tillage Intensity and Conservation Cropping in the United States, released September 2018.

Reducing nutrient loadings to the Gulf of Mexico most cost effectively would concentrate efforts in the Lower Mississippi sub-basin

Thursday, September 27, 2018

Every summer, a large area forms in the Gulf of Mexico where dissolved oxygen is too low for many aquatic species to survive. This “hypoxic zone” is fueled by nutrient (nitrogen and phosphorus) runoff from the Mississippi/Atchafalaya River Basin (MARB), a region containing about 70 percent of U.S. cropland. Recent ERS research estimated that the least-cost strategy for reducing nutrient deliveries to the Gulf from cropland in the MARB would focus a large share of the nutrient-reducing practices and cropping changes in the Lower Mississippi sub-basin. Almost half of nitrogen (44 percent) and phosphorus (46 percent) reductions under the least-cost scenario would come from the Lower Mississippi. Although the baseline analysis estimates that agriculture in the Upper Mississippi sub-basin delivers the most nitrogen to the Gulf relative to other sub-basins (over 32 percent), the Lower Mississippi sub-basin’s proximity to the Gulf means that a higher percentage of nutrient losses there reaches the Gulf than from fields farther upstream. The Lower Mississippi was estimated to have relatively high per-acre nutrient losses and deliveries to the Gulf, as well as the lowest per-pound costs of reducing nitrogen deliveries for almost all conservation practices analyzed. This chart appears in the ERS report Reducing Nutrient Losses From Cropland in the Mississippi/Atchafalaya River Basin: Cost Efficiency and Regional Distribution, released September 2018.

Prevalence of USDA Environmental Quality Incentives Program contracts for conservation tillage varies by region

Wednesday, September 12, 2018

USDA offers financial assistance to farmers for implementing a wide range of conservation practices through its Environmental Quality Incentives Program (EQIP). Conservation tillage practices—including no-till, strip-till row crop planting, and mulch till—can improve soil health, reduce erosion, and reduce nutrient pollution to lakes, streams, and rivers. Farmers practicing no-till plant crops without using any sort of plow to turn residue from the prior crop into the soil. Strip tillage disturbs only the soil within the planting row, while mulch tillage minimizes soil disturbance and distributes crop residue. Between 2011 and 2016, the prevalence of EQIP contracts that included conservation tillage practices (as defined in the note) varied regionally. For example, the share was relatively high in North Dakota and northern Iowa, but much lower in neighboring counties in South Dakota. These variations may be due to underlying differences in regional adoption patterns, as well as differences in State and local funding priorities through EQIP. This chart updates data found in the April 2013 ERS report, “The Role of Conservation Programs in Drought Risk Adaptation.”

Planting switchgrass would increase nitrogen fertilizer application, but reduce nitrogen runoff across the United States

Tuesday, August 28, 2018

Native grasses, including switchgrass, have extensive root networks that reach deep into the soil—increasing water filtration, nutrient holding capacity, and erosion control. Switchgrass also offers a potential renewable source for liquid fuels or bioelectricity, but is not currently widely grown. An ERS study simulated the effects on agricultural land use and on the environment of growing enough switchgrass to generate 250 billion kilowatt-hours of electricity annually—approximately the amount generated by U.S. hydropower today. Switchgrass is expected to be grown in regions that have high switchgrass yields, but relatively low yields of food crops or hay. The Northern Plains (NP) and Appalachia (AP) would provide two-thirds of total land planted in switchgrass. As switchgrass acreage increases and displaces non-energy crops, nitrogen fertilizer applied per acre of non-energy crop increases. All regions would experience increased nitrogen application per cropland acre, except the Pacific region (PA), which shows a small decrease. However, the overall effect of planting more switchgrass would be to retain more nitrogen nutrient and reduce nitrogen runoff into water bodies. The amount of nitrogen lost to water is expected to decline compared with the baseline scenario by about 4 percent nationally, with declines experienced in 7 of 10 regions. This chart is derived from the January 2017 ERS report, Dedicated Energy Crops and Competition for Agricultural Land.

Almond pollination service fees more than doubled since 2004

Tuesday, July 17, 2018

As late as 1988, pollination services accounted for only 11 percent of beekeeper revenue, with the majority of revenue coming from honey sales. In 2016, that share had risen to 41 percent, slightly surpassing revenue from honey sales. The relatively recent increase in pollination service revenue mainly stems from the dramatic growth in acreage for almonds. Compared with other crops, almonds require more honey bee colonies per acre for pollination and suffer greater yield losses without insect pollination. Beekeeper surveys in California and the Pacific Northwest indicate that, until 2004, almond pollination fees were only slightly higher than fees for other crops. From 2004 to 2006, however, almond pollination service fees more than doubled and, after receding slightly, remained high through 2016. Recent data show almond farmers paid $165 per colony rented in 2016, roughly triple the average of $55 for other crops. This chart appears in the July 2018 Amber Waves Finding, “Driven by Almonds, Pollination Services Now Exceed Honey as a Source of Beekeeper Revenue.

Ownership of oil and gas rights among farm operators varies across States

Wednesday, June 27, 2018

The ability of landowners to profit from oil and gas development on their land depends on whether they own the oil and gas rights associated with their property. Nationally, 5.4 percent of farm operators reported owning oil and gas rights in 2014. In counties with oil and gas production, the share was higher at 11.4 percent. The share of operators who reported owning oil and gas rights exceeded the national average in States where oil and gas counties were abundant—including Oklahoma and Pennsylvania (about 14 percent each) and Kansas, Texas, Arkansas, and North Dakota (about 10 percent each). Separate ownership of the surface and subsurface rights is more common in the Western United States, particularly when shale formations lie above or below conventional oil and gas fields with a history of drilling, because oil and gas rights may have been sold previously. By comparison, the Marcellus shale play extends into areas of Pennsylvania with little history of drilling. Unified ownership is likely much higher there, increasing that State’s share. This chart appears in the June 2018 ERS report, Ownership of Oil and Gas Rights: Implications for U.S. Farm Income and Wealth.

Conservation program spending levels off but continues shift to Working Land Programs

Friday, May 4, 2018

USDA agricultural conservation programs provide technical and financial assistance to farmers who adopt and maintain practices that conserve resources or enhance environmental quality. Although USDA implements more than a dozen individual conservation programs, nearly all assistance is channeled through six: the Conservation Reserve Program (CRP), Environmental Quality Incentives Program (EQIP), Conservation Stewardship Program (CSP), Conservation Technical Assistance (CTA), Agricultural Conservation Easement Program (ACEP), and the Resource Conservation Partnership Program (RCPP). EQIP, CSP, and CTA are often referred to as “Working Land Programs” because they focus primarily on supporting conservation on land in agricultural production (crops or grazing). The 2014 Farm Act continued to emphasize working land conservation. Between 2012 and 2017, combined funding for Working Land Programs accounted for more than 50 percent of spending in USDA conservation programs. This emphasis reflects a long-term trend—begun under the 2002 Farm Act—that increased annual spending in Working Land Programs. In 2017 dollars (to adjust for inflation), this spending increased from roughly $1 billion under the 1996 Farm Act to more than $3 billion under the 2014 Act. This chart updates data found in the May 2014 Amber Waves feature, "2014 Farm Act Continues Most Previous Trends In Conservation."

USDA’s Environmental Quality Incentives Program continues expansion of financial assistance for cover crops

Monday, April 23, 2018

USDA offers financial assistance to farmers for implementing a wide range of conservation practices through the Environmental Quality Incentives Programs (EQIP). Two of the most popular EQIP practices for addressing soil-related resource concerns are no-till (or strip-till row crop planting) and cover crops. Farmers practicing no-till plant crops without using any sort of plow to turn residue from the prior crop into the soil. Cover crops (such as clover, field peas, and annual ryegrass) are typically grown over the winter, between plantings of commodity crops. Planting a cover crop can improve soil health, reduce erosion, and reduce nutrient pollution to lakes, streams, and rivers. Between 2005 and 2016, USDA funding for cover crops in EQIP increased from about $5 million to more than $90 million in nominal terms. Over this same period, funding for no-till declined, in part due to increasing adoption of no-till by farmers even without payment. The larger total annual obligations for cover crops in more recent years partly reflects the higher per-acre costs of implementing cover crops. This may include seed costs and the cost of removing the cover crop. This chart updates data found in the September 2016 Amber Waves feature, “An Economic Perspective on Soil Health.”

Wetland Compliance incentives are strong in Montana, North Dakota, South Dakota, Minnesota, and Iowa

Tuesday, February 27, 2018

Wetlands provide a wide range of ecosystem services in all parts of the United States. For most U.S. agricultural programs, farmers who receive benefits must refrain from draining wetlands on their farm. The 2014 Farm Act re-linked crop insurance premium subsidies to this provision, known as Wetland Compliance (WC), for the first time since 1996. ERS researchers examined the effect of premium subsidies on farmer’s compliance incentives under the 2014 Farm Act. (Because of data limitations, ERS researchers focused on States that include the Prairie Pothole region: Montana, North Dakota, South Dakota, Minnesota, and Iowa, where wetland habitat is critical to ducks and other migratory birds.) In Prairie Pothole States, WC incentives are strong. When the compliance incentive includes premium subsidies, an estimated 75 percent (2.6 million acres) of potentially convertible wetland is on farms where Compliance incentives (farm program benefits) are clearly large enough to offset revenue lost by not draining these lands for crop production. Severing the link between WC and crop insurance premium subsidies (while continuing the link between Compliance and other 2014 Farm Act programs) would reduce the number of potentially convertible wetlands with strong protection by 15 percent (from 2.6 to 2.2 million acres). This chart appears in the July 2017 report, Conservation Compliance: How Farmer Incentives Are Changing in the Crop Insurance Era.

California farmers shifted to groundwater when drought reduced surface water availability

Tuesday, January 2, 2018

Prolonged drought generally results in large reductions in the quantity of surface water delivered, affecting farm production systems that depend heavily on surface water for irrigation. Groundwater may substitute as a source for irrigation water when the availability of surface water declines. For example, although most farmers in California’s main agricultural areas rely on surface water for the largest share of their irrigation needs, many parts of the State have sufficient groundwater reserves to provide a partial buffer against the impacts of drought. However, recurring drought and groundwater “overdraft”—when the amount of water extracted is greater than the amount of water entering the aquifer—have resulted in large declines in aquifer levels in some areas. This chart appears in the June 2017 Amber Waves feature, "Farmers Employ Strategies To Reduce Risk of Drought Damages."

Compliance incentives under the 2014 Farm Act would be lower without link to crop insurance premium subsidy

Wednesday, November 1, 2017

To be eligible for most U.S. farm program benefits, participating farmers must apply soil conservation systems on cropland that is particularly vulnerable to soil erosion. The 2014 Farm Act re-linked crop insurance premium subsidies to this provision, known as Highly Erodible Land Compliance (HELC), for the first time since 1996. These premium subsidies account for a significant share of Compliance incentives—typically between 30 and 40 percent, depending on crop prices. The 2014 Act also included major changes in other Compliance-linked programs, including the elimination of Direct Payments, a large program under the 2008 Farm Act. On individual farms, Compliance-linked benefits could be higher or lower than they would have been under a continuation of the 2008 Act. Under the 2014 Act (blue bars), ERS researchers estimated that less than 10 million acres are on farms that would have experienced a 50-percent or larger decline in Compliance incentives between the two Farm Acts given crop prices similar to 2010 levels. If premium subsidies were not subject to Compliance (green bars), more than 40 million acres of cropland in HEL fields would be on farms where Compliance incentives would decline by 50 percent or more. This chart appears in the July 2017 Amber Waves feature, "Conservation Compliance in the Crop Insurance Era."

Drought is typically the largest single driver of crop disaster assistance and indemnity payments

Tuesday, October 17, 2017

At any given time, some portion of the country faces drought conditions. In recent years, large areas of the United States have experienced prolonged drought, with significant impacts across entire agricultural sectors. A major drought can reduce crop yields, lead farmers to cut back planted or harvested acreage, reduce livestock productivity, and increase costs of production inputs such as animal feed or irrigation water. Since the Dust Bowl in the 1930s, drought has been an important focus of U.S. farm policy. Early Federal policy mitigated farmers’ drought-induced hardships primarily by providing ad hoc disaster assistance in response to a drought. With changes to the Federal crop insurance program in the 1990s, the emphasis of farm programs shifted from ad hoc disaster assistance to risk management, with a greater reliance on crop insurance to compensate farmers for drought losses. As a result, drought has been the largest individual driver of Federal indemnity payments and disaster assistance for over four decades. This chart appears in the June 2017 Amber Waves feature, "Farmers Employ Strategies To Reduce Risk of Drought Damages."

Declines in pollinator forage suitability concentrated in the Midwest

Tuesday, October 3, 2017

About one-third of the world’s food crops depend on pollinators like bees. Managed honeybees in the United States alone provide over $350 million worth of pollination services each year. Pollinators rely on the land to provide forage, the pollen and nectar of flowering plants that pollinators feed on to survive. If forage is inadequate, pollinator health may be poor. ERS developed a forage suitability index (FSI) to examine how broad trends in land use have affected the availability of forage for pollinators. Findings show the national average FSI increased by about 2 percent from 1982 to 2002, due in part to the introduction of USDA’s Conservation Reserve Program (CRP) in 1986. The mix of species farmers agree to plant on CRP land often improves pollinator forage. However, the national average FSI plateaued between 2002 and 2012. The FSI had a greater-than-average decline in North Dakota and South Dakota—the summer foraging grounds for many managed honeybee colonies. Decreases in CRP acreage and increases in soybean acreage, which provide poor forage for pollinators, helped drive this decline. This chart appears in the July 2017 Amber Waves finding, "Declines in Pollinator Forage Suitability Were Concentrated in the Midwest, the Over-Summering Grounds for Many Honeybees."

Conservation Compliance links crop insurance premium subsidies to soil conservation

Friday, September 15, 2017

Most U.S. agricultural programs that provide payments to farmers require participating farmers to apply soil conservation systems on cropland that is particularly vulnerable to soil erosion. ERS research shows that this provision, Highly Erodible Land Compliance (HELC), is effective in reducing soil erosion when the farm program benefits that could be lost due to noncompliance exceed the cost of meeting conservation requirements. Under the 2014 Farm Act, some programs previously linked to HELC were eliminated, while new ones were created. In addition, crop insurance premium subsidies were re-linked to HELC for first time since 1996. Twenty-five million acres of highly erodible cropland are estimated to be in farms with relatively strong Compliance incentives (rightmost bars) under the Act. Without premium subsidies, farms with this level of HELC incentive would include only 14 million acres of highly erodible cropland. By comparison, farms with relatively weak Compliance incentives (the second and third sets of bars) include an estimated 27 million acres of highly erodible cropland. Without premium subsidies, farms with this level of HELC incentive would include an estimated 45 million acres of highly erodible cropland. A version of this chart appears in the ERS report, Conservation Compliance: How Farmer Incentives Are Changing in the Crop Insurance Era, released July 2017.

Conservation Compliance has significantly reduced water erosion on fields designated as highly erodible

Friday, July 28, 2017

Conservation Compliance ties eligibility for most Federal farm program benefits to soil and wetland conservation requirements. Under Highly Erodible Land Conservation (HELC), for example, farmers who grow crops in fields designated as highly erodible land (HEL) must apply an approved conservation system—one or more practices that work together to reduce soil erosion. ERS researchers used a statistical model to compare water (rainfall) erosion on cropland in HEL fields to similar cropland not in HEL fields. Between 1982 and 1997, soil erosion reductions were significantly larger in HEL fields (39 percent, or 6.6 tons per acre) than in those not designated as HEL fields (24 percent, or 3.9 tons per acre). The difference—about 2.7 tons per acre—is statistically different from zero, suggesting that HELC did make a significant difference in soil erosion reduction. During 1997-2012, after the initial implementation of HELC was complete, ERS analysis finds that these soil conservation gains were maintained. This chart appears in the July 2017 Amber Waves feature, "Conservation Compliance in the Crop Insurance Era."

Food system drove decline in U.S. per capita energy use between 2002 and 2007

Monday, July 3, 2017

The U.S. food system uses a substantial share of the national energy budget. In 2012, the food system used 11.9 quadrillion British thermal units (Btu), representing 12.5 percent of the 95.2 quadrillion Btu of total energy used. Not only does the food system use a large share of energy, it can also drive national trends in energy use due to its higher responsiveness to changes in energy prices. Evidence of the food system’s ability to drive energy use is clear when the data are expressed on a per capita basis to remove population-driven changes. Between 2002 and 2007—a period of rising energy prices—nonfood-related energy use increased by 2.5 million Btu per capita, while food-related energy use showed a cumulative per-capita change of -5.3 million Btu, equivalent to each American using about 48 gallons less gasoline over this 5-year period. One reason for the increase in non-food related energy use is that purchases of non-food goods outpaced food purchases during that time. Food-related energy reductions caused national average per capita energy use to decline by 2.7 million Btu between 2002 and 2007. This chart appears in "The Relationship Between Energy Prices and Food-Related Energy Use in the United States" in ERS’s Amber Waves magazine, June 2017.

South American countries often exported their soy products to Asia and European Union

Thursday, June 29, 2017

To meet the increasing demand for agricultural commodities, forestland is frequently converted into crop fields or pasture, especially in developing countries. For example, deforestation in Argentina, Bolivia, Brazil, and Paraguay is linked with the production of soybeans (and beef). However, the majority of soybean production in these countries is consumed elsewhere, especially in China, the rest of Asia, and the European Union. Brazil and Argentina, the largest Latin American producers, exported an average of 67 percent of their soy production outside of South America. By contrast, the United States consumed 50 percent of its production and exported 44 percent of its production outside of North America. The soy product exported varied with the country. For example, Argentina exported about 8 million tons of soybeans and 22 million tons of soybean meal; by comparison, Brazil exported about 43 million tons of soybeans and 13 million tons of soybean meal. This chart appears in the ERS report International Trade and Deforestation: Potential Policy Effects via a Global Economic Model, released April 2017.

Managed honeybee colony numbers increased since 2006 even as colony mortality remained high

Friday, June 23, 2017

About one-third of the world’s food crops depend on pollinators, such as managed honeybees and more than 3,500 species of native bees. These pollinators face a variety of stressors that can impact their health, such as insect pests, pesticide exposure, and habitat changes. Honeybee mortality, as measured by the loss of a honeybee colony, has remained high over the last decade. In 2006-07, approximately 30 percent of honeybee colonies were lost during the over-winter period (October 1 through April 1). The over-winter loss rate has since diminished (22 percent in 2014-15), but over-summer losses have grown. The net result is that about 44 percent of colonies perished in 2015-16, compared with 36 percent in 2010-11. While recent public attention has focused largely on colony mortality trends, overall colony numbers have increased since 2006. This was accomplished with intensified beekeeper management, including splitting colonies, adding new queens, and offering supplemental feeding. This chart is based on the ERS report Land Use, Land Cover, and Pollinator Health: A Review and Trend Analysis, released June 2017.

Households accounted for more than one-third of U.S. food-related energy use in 2012

Tuesday, June 20, 2017

Food-related energy use includes all energy used in the production and preparation of foods and beverages purchased by and for U.S. consumers. In 2012, a total of 11.9 quadrillion British thermal units (qBtu) were used throughout all stages of the food system. At the household level, 3.5 qBtu were used in kitchens and 0.6 qBtu were used for household food-related transportation. This includes energy used directly—to drive to the grocery store and to power refrigerators, stoves, and other kitchen appliances in the home—and indirectly—to build those appliances. The total 4.1 qBtu used by households accounted for over one-third of energy use attributed to the food system. Food and beverage processors, such as meat packers, commercial bakeries, and breweries, used 2.2 qBtu in 2012. Electricity was the most used energy commodity at 6.8 qBtu, or 58 percent of the total. Petroleum products and natural gas contributed similar shares at 20 and 18 percent, respectively, while other energy such as renewables, ranked last in its contribution to food system energy use at 0.5 trillion Btu. This chart appears in "The Relationship Between Energy Prices and Food-Related Energy Use in the United States" in ERS’s Amber Waves magazine, June 2017.