ERS Charts of Note

Subscribe to get highlights from our current and past research, Monday through Friday, or see our privacy policy.
See also: Editors' Pick 2018: Best of Charts of Note gallery.

Reset

Genetically engineered varieties of corn, cotton, and soybeans have plateaued at more than 90 percent of U.S. acreage planted with those crops

Monday, July 25, 2016

U.S. soybeans, cotton and corn farmers have nearly universally adopted genetically engineered (GE) seeds in recent years, despite their typically higher prices. Herbicide-tolerant (HT) crops, developed to survive the application of specific herbicides that previously would have destroyed the crop along with the targeted weeds, provide farmers with a broader variety of options for weed control. Insect-resistant crops (Bt) contain a gene from the soil bacterium Bacillus thuringiensis that produces a protein toxic to specific insects, protecting the plant over its entire life. “Stacked” seed varieties carry both HT and Bt traits, and now account for a large majority of GE corn and cotton seeds. In 2016, adoption of GE varieties, including those with herbicide tolerance, insect resistance, or stacked traits, accounted for 94 percent of soybean acreage (soybeans have only HT varieties), 93 percent of cotton acreage, and 92 percent of corn acreage planted in the United States. This chart is found in the ERS data product, Adoption of Genetically Engineered Crops in the U.S., updated July 2016.

Buyer concentration grows in U.S. cattle markets

Thursday, March 24, 2016

Concentration levels in many U.S. agricultural markets have risen in recent decades, resulting in fewer buyers accounting for a growing share of purchases of agricultural commodities. This is particularly true for livestock markets. The four largest packers now account for nearly 70 percent of the value of all livestock purchased for slaughter, compared to 26 percent in 1980. For fed cattle, the concentration level is even higher, as the share of the top four firms increased from 36 percent to 85 percent between 1980 and 2012. This chart is from the ERS report, Thinning Markets in U.S. Agriculture: What are the Implications for Producers and Processors?

Productivity in U.S. agriculture, not increased input use, has fueled agricultural output growth

Wednesday, January 27, 2016

Agricultural total factor productivity (TFP) is the difference between the aggregate total output of crop/livestock commodities and the combined use of land, labor, capital and material inputs employed in farm production. Growth in TFP implies that the adoption of new technology or improved management of farm resources is increasing average productivity or efficiency of input use. From 1948 to 2013, U.S. farm sector output grew by 170 percent with about the same level of farm input use over the period, and thus the positive growth in farm sector production was substantially due to productivity growth. While aggregate input use in agriculture has been relatively stable over time, the composition of agricultural inputs (not shown in this chart) has shifted. Between 1948 and 2013, labor use declined sharply by 78 percent, land use in agriculture dropped by 26 percent, while the use of intermediate goods (such as energy, agricultural chemicals, purchased services, and seed/feed) and capital (farm machinery and buildings) expanded. Long-term agricultural productivity is fueled by innovations in animal/crop genetics, chemicals, equipment, and farm organization that result from public and private research and development. This chart is found in the ERS data product Agricultural Productivity in the U.S., updated December 2015.

Agricultural production in India shifting to high-value outputs

Wednesday, December 16, 2015

India’s economic growth and rising incomes have expanded consumer food demand to include higher valued foods, such as fruit, vegetables, and some meat products. Indian farmers appear to be meeting these new growth opportunities. A look at average production shares in the 1980-84 and the 2004-08 periods shows that growth in production of animal and horticulture products reduced the share of production growth attributable to grains. Accordingly, India’s real value of farm production increased an average 3 percent each year, rising from 2.6 trillion rupees in 1980 to 7.3 trillion rupees in 2008, or from $42 billion to $116 billion. This chart is based on Propellers of Agricultural Productivity in India, December 2015.

Incentives drive public vs. private agricultural research and development expenditure mix

Monday, November 16, 2015

Across a broad range of topics for agriculture, food, and related issues, research and development (R&D) conducted by U.S. public research institutions (State and Federal institutions) tends to emphasize different themes than R&D conducted by private firms. The two sectors have overlapping research interests in areas related to farm production—crop, animal, and farm machinery innovation. However, in areas where reaping benefits from research results is more difficult for private firms—such as in the environmental impacts of agriculture, and human nutrition/food safety—public sector research dominates. The private sector tends to focus on areas such as food manufacturing, where research benefits are more readily captured by the specific innovator. Much of the private expenditures on food R&D, which does not directly affect farm-level productivity, is on new product development rather than on improved food manufacturing processes. New technologies such as gene transfer, along with intellectual property protection, have increased private incentives for crops research, and private crop research investment has grown. This chart appears in the ERS research report, Agricultural Productivity Growth in the United States: Measurement, Trends, and Drivers, ERR-189, released July 2015.

U.S. poultry and eggs output has grown more rapidly than dairy and meat animals

Friday, October 23, 2015

Total U.S. livestock output grew 130 percent from 1948 to 2011, with the poultry and eggs subcategory growing much faster than meat animals (including cattle, hogs, and lamb) and dairy products. In 2011, the real value of total poultry and egg production was more than seven times its level in 1948, with an average annual growth rate exceeding 3 percent. The rapid growth of poultry production is due largely to changes in technology—advances in genetics, feed formulations, housing, and practices—and increased consumer demand. Retail prices of poultry fell in the late 1970’s and 1980’s, relative to beef and pork prices, leading to expanded poultry consumption in that period. Increased domestic consumption and exports were also driven by consumer response to an expanding range of new poultry products, as the industry moved away from a reliance on whole birds and production shifted to cut-up parts and processed products such as boneless chicken, breaded nuggets/tenders, and chicken sausages. This chart is found in the ERS report, Agricultural Productivity Growth in the United States: Measurement, Trends, and Drivers, July 2015.

Increased productivity now the primary source of growth in world agricultural output

Friday, October 16, 2015

The average annual rate of global agricultural output growth slowed in the 1970s and 1980s, then accelerated in the 1990s and 2000s. In the latest period estimated (2001-12), global output of total crop and livestock commodities was expanding at an average rate of 2.5 percent per year. In the decades prior to 1990, most output growth came about from intensification of input use (i.e., using more labor, capital, and material inputs per acre of agricultural land). Bringing new land into agriculture production and extending irrigation to existing agricultural land were also important sources of growth. This changed over the last two decades, as input growth slowed. In 2001-12, improvements in productivity—getting more output from existing resources—accounted for about two-thirds of the total growth in agricultural output worldwide, reflecting the use of new technology and changes in management practices by agricultural producers around the world. This chart is based on the ERS data product, International Agricultural Productivity, updated October 2015.

Contract labor services a growing part of U.S. farm production

Monday, October 5, 2015

Agricultural technologies adopted over the last half-century, embodied in equipment, structures, seeds, and chemicals, allow farmers to use less labor. As a result, even though total agricultural production more than doubled between 1960 and 2011 (the latest estimates available), the amount of self-employed labor in agriculture fell by 70 percent, and the amount of hired labor fell by 60 percent. While most labor used on farms comes from the self-employed labor of farm families and hired labor (full and part-time employees), farmers also hire labor contractors to provide labor to farms, usually for specific tasks. Contract labor accounted for 1.2 percent of total costs in agriculture in 2011, compared to 13 percent for self-employed and hired labor. While the use of contract labor declined by half between 1960 and the mid-1980’s, tracking the decline in self-employed and hired labor, it has since grown as some farmers have shifted to contract labor in place of hired labor. A version of this chart is found in the ERS report, Agricultural Productivity Growth in the United States: Measurement, Trends, and Drivers, July 2015.

Sustained public investment in research supports longrun agricultural productivity growth

Tuesday, September 15, 2015

Innovation funded by research and development (R&D) investment is the major driver of long-term agricultural productivity growth. ERS projected growth in agricultural productivity (measured as total factor productivity, or TFP) under alternative public R&D assumptions starting in 2010: a 1-percent increase in annual public research funding in real terms (Scenario 1); constant nominal public research funding (Scenario 2); and constant nominal public research funding with an assumed one-time 25-percent cut in 2014, followed by constant nominal funding at the lower level (Scenario 3). Because R&D takes a long time to bear fruit, TFP growth differs little among the scenarios in the first decade, but then growth rates diverge. From 2010 to 2050, the annual rate of TFP growth is expected to increase/fall from the historical average of 1.42 percent per year to 1.46, 0.86, and 0.63 percent for Scenario 1, 2, and 3, respectively. This chart is found in the September 2015 Amber Waves feature, "U.S. Agricultural Productivity Growth: The Past, Challenges, and the Future."

Stacked GE varieties of corn have become commonplace

Tuesday, August 18, 2015

U.S. farmers have embraced genetically engineered (GE) seeds in the 20 years since their commercial introduction. Herbicide-tolerant (HT) crops, developed to survive application of specific herbicides that previously would have destroyed the crop along with the targeted weeds, provide farmers with a broader variety of options for effective weed control. Insect-resistant crops contain a gene from the soil bacterium Bacillus thuringiensis (Bt) that produces a protein that is toxic to specific insects, protecting the plant over its entire life. Seeds that have both herbicide-tolerant and insect-resistant traits are referred to as “stacked.” Based on USDA survey data, adoption of stacked GE corn varieties has increased sharply, reaching 77 percent of planted corn acres in 2015. Conversely, use of Bt-only corn dropped from 27 percent of planted corn acreage in 2004 to 4 percent in 2015, while HT-only corn dropped from 24 percent of planted corn acreage in 2007 to 12 percent in 2015. Generally, stacked seeds (seeds with more than one GE trait) tend to have higher yields than conventional seeds or seeds with only one GE trait. This chart is based on the ERS data product, Adoption of Genetically Engineered Crops in the U.S., updated July 2015.

International agricultural productivity growth remains uneven across countries

Monday, August 10, 2015

Agricultural total factor productivity (TFP) is the difference between the aggregate total output of crop/livestock commodities and the combined use of land, labor, capital and material inputs employed in farm production. Growth in TFP implies that the adoption of new technology or improved management of farm resources is increasing average productivity or efficiency of input use. Worldwide, agricultural TFP grew at an average annual rate of 1.7 percent during of 2002-11, the latest decade for which figures are available. However, not all countries are achieving growth in agricultural TFP. Among developing countries, some large countries like China and Brazil are improving their agricultural TFP rapidly, but many countries in Sub-Saharan Africa are lagging behind. Most developed countries are continuing to achieve moderate rates of agricultural TFP growth, but some, such as the UK and Australia, have experienced a slowdown in TFP growth. Maintaining growth in agricultural TFP is necessary for achieving global food security goals and could help preserve natural resources. This map is based on data from ERS’ International Agricultural Productivity accounts.

Labor and land inputs have fallen in U.S. agricultural production, use of intermediate goods has risen

Monday, July 27, 2015

U.S. farm output more than doubled between 1948 and 2011, while aggregate agricultural inputs increased by just 4 percent. However, the composition of agricultural inputs shifted. Between 1948 and 2011, labor use declined by 78 percent, while total land input dropped by 26 percent. The agricultural sector’s consumption of intermediate goods (such as energy, agricultural chemicals, purchased services, and seed/feed) grew by 140 percent, while capital inputs (equipment, buildings, and inventories) increased by 65 percent. The shift in the input mix away from labor and toward machinery and intermediate inputs reflects trends in relative prices, which dropped significantly relative to labor between 1948 and 2011. After 1980, the use of capital inputs fell, while the growth in intermediate inputs slowed considerably. Total agricultural input use fell by 15 percent in 1980-2011, even as output continued to grow. This chart is found in the ERS report, Agricultural Productivity Growth in the United States: Measurement, Trends, and Drivers, July 2015.

Genetically engineered seeds planted on over 90 percent of U.S. corn, cotton, and soybean acres in 2015

Monday, July 20, 2015

U.S. farmers have adopted genetically engineered (GE) seeds in the 20 years since their commercial introduction, despite their typically higher prices. Herbicide-tolerant (HT) crops, developed to survive the application of specific herbicides that previously would have destroyed the crop along with the targeted weeds, provide farmers with a broader variety of options for weed control. Insect-resistant crops (Bt) contain a gene from the soil bacterium Bacillus thuringiensis that produces a protein toxic to specific insects, protecting the plant over its entire life. “Stacked” seed varieties carry both HT and Bt traits, and now account for a large majority of GE corn and cotton seeds. In 2015, adoption of GE varieties, including those with herbicide tolerance, insect resistance, or stacked traits, accounted for 94 percent of cotton acreage, 94 percent of soybean acreage (soybeans have only HT varieties), and 92 percent of corn acreage planted in the United States. This chart is found in the ERS data product, Adoption of Genetically Engineered Crops in the U.S., updated July 2015.

U.S. public sector plays a key role in collecting, conserving, and distributing crop genetic resources

Monday, June 22, 2015

As agriculture adapts to climate change, crop genetic resources can be used to develop new plant varieties that are more tolerant of changing environmental conditions. Crop genetic resources (or germplasm) consist of seeds, plants, or plant parts that can be used in crop breeding, research, or conservation. The public sector plays an important role in collecting, conserving, and distributing crop genetic resources because private-sector incentives for crucial parts of these activities are limited. The U.S. National Plant Germplasm System (NPGS) is the primary network that manages publicly held crop germplasm in the United States. Since 2003, demand for crop genetic resources from the NPGS has increased rapidly even as the NPGS budget has declined in real dollars. By way of comparison, the NPGS budget of approximately $47 million in 2012 was well under one-half of 1 percent of the U.S. seed market (measured as the value of farmers’ purchased seed) which exceeded $20 billion for the same year. This chart updates ones found in the June 2015 Amber Waves feature, Crop Genetic Resources May Play an Increasing Role in Agricultural Adaptation to Climate Change.

Productivity rises in global agriculture

Wednesday, March 11, 2015

By using new technologies, farmers can produce more food using fewer economic resources at lower costs. One measure of technological change is total factor productivity (TFP). Increased TFP means that fewer economic resources (land, labor, capital and materials) are needed to produce a given amount of economic output. However, TFP does not account for the environmental impacts of agricultural production; resources that are free to the farm sector (such as water quality, greenhouse gas emissions, biodiversity) are not typically included in TFP. As a result, TFP indexes may over- or under-estimate the actual resource savings from technological change. Growth in global agricultural TFP began to accelerate in the 1980s, led by large developing countries like China and Brazil. This growth helped keep food prices down even as global demand surged. This chart uses data available in International Agricultural Productivity on the ERS website, updated October 2014.

Half of U.S. cropland now on farms with 1,200 acres or more

Tuesday, February 17, 2015

The average (mean) number of acres on crop farms has changed little over 3 decades, with a slight increase from 241 acres in 2007 to 251 in 2012. However, the mean misses an important element of changing farm structure; it has remained stable because while the number of mid-size crop farms has declined over several decades, farm numbers at the extremes (large and small) have grown. With only modest changes in total cropland and the total number of crop farms, the size of the average (mean) farm has changed little. However, commercial crop farms, which account for most U.S. cropland, have gotten larger, aided by technologies that allow a single farmer or farm family to farm more acres. The midpoint acreage (at which half of all cropland acres are on farms with more cropland than the midpoint, and half are on farms with less) effectively tracks cropland consolidation over time. The midpoint acreage of total and harvested cropland has increased over the last three decades, from roughly 500-600 acres in 1982 to about 1,200 acres in the most recent census of agriculture data (2012). This chart is extended through 2012 from one found in the ERS report, Farm Size and the Organization of U.S. Crop Farming, ERR-152, August 2013.

U.S. hog production increasingly occurs on the largest operations

Monday, January 12, 2015

While the number of all farms in the United States remained fairly constant, the number of hog farms fell by about 70 percent between 1992 and 2009, from over 240,000 to about 71,000. Despite fewer hog farms, the Nation’s hog inventory was stable during the period, averaging about 60 million head, with cyclical fluctuations between 56 and 68 million head. Thus, hog production consolidated as fewer, larger farms accounted for an increased share of total output. From 1992 to 2009, the share of the U.S. hog and pig inventory on farms with 2,000 head or more increased from less than 30 percent to 86 percent. In 2009, farms with 5,000 head or more accounted for 61 percent of all hogs and pigs. This chart is found in the ERS report, U.S. Hog Production From 1992 to 2009: Technology, Restructuring, and Productivity Growth, ERR-158, October 2013.

U.S. hog operations have become increasingly specialized

Tuesday, December 16, 2014

The traditional approach of farrow-to-finish hog production in the U.S.—where breeding and gestation, farrowing, nursery, and finishing to market weight are performed on one operation—is being replaced by operations that specialize in a single production phase. In 1992, more than 50 percent of U.S. hog operations used the farrow-to-finish approach. By 2009, less than 25 percent were farrow-to-finish producers. In contrast, hog operations specializing in raising feeder pigs weighing 30-80 pounds to market weights of 225-300 pounds (feeder-to-finish) accounted for less than 20 percent of hog producers in 1992, but nearly 50 percent in 2009. Specialized operations produced more than 70 percent of U.S. finished hog output in 2009, and were more likely to be producing hogs under contract than were farrow-to-finish farms. This chart is found in the ERS report, U.S. Hog Production From 1992 to 2009: Technology, Restructuring, and Productivity Growth, ERR-158, October 2013.

Federal and State institutions fund and conduct public agricultural R&D

Monday, November 3, 2014

In 2012, U.S. public sector agricultural research and development (R&D) investment totaled about $4.7 billion. After adjusting for inflation, this represents a decline of nearly 25 percent since the mid-2000s. Expenditures for State Agricultural Experiment Stations and other State-based cooperating institutions accounted for a little under two-thirds of all public agricultural R&D, while USDA agencies accounted for the remaining third. Internal funding sources account for almost all of USDA’s in-house R&D expenditures while State institutions rely on a variety of funding sources. USDA-administered funding to States was about $660 million in 2012. Of this, there were two notable funding streams: $284 million in “formula funds,” and $189 million in competitive grants for the Agriculture and Food Research Initiative. In 2012, State appropriations provided $1.1 billion in State R&D funds, while non-USDA Federal agencies provided about $550 million, and private industry, product sales, and other non-Federal sources provided about $750 million. This chart updates one found in the Amber Waves finding, "Sources of Public Agricultural R&D Changing," June 2007.

Agricultural productivity advances across all global regions

Tuesday, October 14, 2014

Continued progress in improving agricultural productivity—producing more output from a unit of aggregate inputs—is key to meeting expanding global food needs. Total factor productivity (TFP) in agriculture is an indicator of the rate of technical change based on a comprehensive measure of the amount of output attained from all of the land, labor, capital, and material resources employed in production. Over the 2002-2011 decade, agricultural TFP rose in every region of the world. In all regions except Latin America and Sub-Saharan Africa, gains in TFP accounted for most of the increase in agricultural output. In regions like Europe, Oceania, and North America, positive TFP growth compensated for declining input use to keep output growth positive in all cases except Europe. While Asia, Latin America, and Sub-Saharan Africa achieved the most rapid expansion in agricultural output over the decade, the former Soviet Union, Asia, and West Asia/North Africa regions recorded the most rapid gains in TFP. Estimates of TFP growth are derived by ERS using data from the Food and Agriculture Organization of the United Nations. This chart is based on data found in ERS's International Agricultural Productivity dataset.

Charts of Note header image for left nav