ERS Charts of Note

Subscribe to get highlights from our current and past research, Monday through Friday, or see our privacy policy.
See also: Editor’s Pick 2017: Best of Charts of Note gallery.

Reset

Guidance systems are used on about half of planted acres for several major crops

Wednesday, October 19, 2016

Guidance systems use global positioning system (GPS) coordinates to automatically steer farm equipment like combines, tractors, and self-propelled sprayers. Guidance systems help reduce operator fatigue and pinpoint precise field locations, within a few inches. Freed from steering, operators can access timely coordinates from a screen, monitor other equipment systems more closely, and correct problems more quickly. Guidance systems also reduce costs by improving the precision of sprays and the seeding of field crop rows. Between 2010 and 2013, these systems were adopted on 45 to 55 percent of planted acres for several major crops, including rice, peanuts, and corn. Once adopted for a particular crop, the use of guidance systems tends to be rapidly adopted by other crop farmers. The ease-of-use and functionality of these systems has also increased along with adoption rates. This chart appears in the ERS report Farm Profits and Adoption of Precision Agriculture , released October 18, 2016.

Share of electricity expenses vary by farm size and principal commodity

Friday, October 14, 2016

Farms rely on electricity to power many essential systems, including irrigation, ventilation, and heating and cooling. Sometimes, due to seasonal demand, farms pay high prices for electricity. How much farms spend on electricity as a percentage of total expenses in a given year varies with farm size and principal commodity. In 2014, the highest share of electricity expenses by commodity were on farms concentrating on the production of peanuts (5.5 percent). By farm size, small poultry producers had the highest share of electricity expenses, 12.8 percent—about 8 times more than large poultry producers. With the exception of peanut producers, large farms had the lowest shares of electricity expenditure among all farm sizes. Large peanut producers likely had a higher share of electricity expenses compared to small producers because irrigation and on-farm drying of harvested peanuts were more economical on large farms. This chart appears in the August 2016 ERS report Trends in U.S. Agriculture’s Consumption and Production of Energy: Renewable Power, Shale Energy, and Cellulosic Biomass.

Some manure nutrients produced in the Chesapeake Bay watershed can be captured for later use

Friday, September 30, 2016

In 2010, to help meet water quality goals, the U.S. Environmental Protection Agency (EPA) adopted a limit on the amount of pollutants that the Chesapeake Bay can receive. Nitrogen and phosphorus, in particular, can lead to adverse effects on public health, recreation, and ecosystems when present in excess amounts. The EPA estimates that applications of manure contribute 15 percent of nitrogen and 37 percent of phosphorus loadings to the Bay. Furthermore, ERS estimates that animal feeding operations (AFOs), which raise animals in confinement, account for 88 percent of manure nitrogen and 84 percent of manure phosphorus generation in that watershed. ERS also estimates that about a third of nitrogen and half of phosphorus produced at AFOs can be recovered for later use. That adds to about 234 million pounds of nitrogen and 106 million pounds of phosphorus recovered. These nutrients can then be redistributed regionally to fertilize agricultural land, thereby lessening nutrient run-off problems in the Bay. The remaining nutrients cannot be recovered. Both nitrogen and phosphorus may be lost during collection, storage, and transportation; nitrogen may also volatize into the atmosphere. This chart is based on the ERS report Comparing Participation in Nutrient Trading by Livestock Operations to Crop Producers in the Chesapeake Bay Watershed, released in September 2016.

Genetically engineered corn and cotton with both herbicide tolerance and insect resistance are now the norm

Thursday, August 18, 2016

Genetically engineered (GE) seeds are widely used in U.S. field crop production. Herbicide-tolerant (HT) crops were developed to survive the application of certain herbicides that previously would have destroyed the crop along with the targeted weeds. Insect-resistant crops contain a gene from the soil bacterium Bacillus thuringiensis (Bt) that produces a protein that is toxic to specific insects. Seeds that have both herbicide-tolerant and insect-resistant traits are referred to as “stacked.” Recent data show that the adoption of stacked corn varieties has increased from 15 percent of U.S. corn acres in 2006 to 76 percent in 2016. Adoption rates for stacked cotton varieties have also grown, from 39 percent in 2006 to 80 percent in 2016. Generally, many different GE traits—each aimed at a specific herbicide or insect—can be stacked; varieties with three or four GE traits are now common. Research suggests that stacked corn seeds have higher yields than conventional seeds or seeds with only one GE trait. This chart is based on data found in the ERS data product, Adoption of Genetically Engineered Crops in the U.S., updated July 2016.

Energy-based expenses vary across farm businesses

Monday, August 15, 2016

Farms consume energy directly in the form of gasoline, diesel, electricity, and natural gas; and indirectly in energy-intensive inputs such as fertilizer and pesticides. Farm businesses—operations with annual gross cash farm income of over $350,000 or smaller operations where farming is reported as the operator’s primary occupation—vary in mix and intensity of direct and indirect energy use. In 2014, farm businesses concentrating on rice, peanut, wheat, and cotton production spent 43-49 percent of their total cash expenses on direct and indirect energy inputs, more than any other crop and livestock producers. Fertilizer and pesticides, which are indirect energy uses because they require large amounts of energy to manufacture, account for the greatest share of energy expenses among farm businesses primarily producing crops. For livestock producers, feed is also an important indirect energy expense but, in this analysis, these costs are accounted for in the crop budgets. Fertilizer expenses accounted for 18-22 percent of total cash expenses for farm businesses concentrating in wheat, corn, and other cash-grain production, and 14-17 percent for farm businesses primarily producing other field crops. Cotton and rice production were associated with relatively high shares of direct energy inputs: fuel is used to apply chemicals and electricity powers irrigation equipment. Peanut producers, which use electricity for irrigation and on-farm drying of harvested peanuts, had the highest share of electricity use at 6 percent, followed by farm businesses concentrating on poultry and cotton at 4 percent. This chart is found in the ERS report, Trends in U.S. Agriculture’s Consumption and Production of Energy: Renewable Power, Shale Energy, and Cellulosic Biomass, released on August 11, 2016.

Genetically engineered varieties of corn, cotton, and soybeans have plateaued at more than 90 percent of U.S. acreage planted with those crops

Monday, July 25, 2016

U.S. soybeans, cotton and corn farmers have nearly universally adopted genetically engineered (GE) seeds in recent years, despite their typically higher prices. Herbicide-tolerant (HT) crops, developed to survive the application of specific herbicides that previously would have destroyed the crop along with the targeted weeds, provide farmers with a broader variety of options for weed control. Insect-resistant crops (Bt) contain a gene from the soil bacterium Bacillus thuringiensis that produces a protein toxic to specific insects, protecting the plant over its entire life. “Stacked” seed varieties carry both HT and Bt traits, and now account for a large majority of GE corn and cotton seeds. In 2016, adoption of GE varieties, including those with herbicide tolerance, insect resistance, or stacked traits, accounted for 94 percent of soybean acreage (soybeans have only HT varieties), 93 percent of cotton acreage, and 92 percent of corn acreage planted in the United States. This chart is found in the ERS data product, Adoption of Genetically Engineered Crops in the U.S., updated July 2016.

Labor productivity is higher on larger U.S. dairy farms than on smaller farms

Friday, June 10, 2016

Most labor on small U.S. dairy farms is provided by the operator and the opera­tor’s family, whereas large dairy farms, while usually still family-owned and operated, rely extensively on hired labor. Labor productivity—output of milk per hour of labor—is much higher on larger dairy farms, with the largest (farms with milking herds of at least 2,000 cows) realizing 10 hundredweight (cwt) per hour of labor, compared to 2-4 cwt per hour on farms with herds of 50-500 head. Large farms operate differently than small dairy farms, as their size allows them to apply practices and technologies that result in higher milk yields and labor productivity. For example, farms with at least 500 cows are much more likely to milk three times a day, while smaller farms typically milk twice a day. Thrice-daily milking raises per-cow milk yields, allows farms to offer more work and higher pay to their hired labor, and creates more intensive use of milking equipment. Greater labor productivity is one source of the cost advantages accruing to larger dairy operations. This chart is based on data found in the ERS report, Changing Structure, Financial Risks, and Government Policy for the U.S. Dairy Industry, March 2016.

U.S. corn and soybean farmers use a wide variety of glyphosate resistance management practices

Monday, May 2, 2016

For weed control, U.S. corn and soybean farmers rely on chemical herbicides which were applied to more than 95 percent of U.S. corn acres in 2010 and soybean acres in 2012. Over the course of the last two decades, U.S. corn and soybean farmers have increased their use of glyphosate (the active ingredient in herbicide products such as Roundup) and decreased their use of herbicide products containing other active ingredients. This shift contributed to the development of over 14 glyphosate-resistant weed species in U.S. crop production areas. Glyphosate resistance management practices (RMPs) include herbicide rotation, tillage, scouting for weeds, and other forms of weed control. In some cases, ERS found that usage rates for RMPs increased from 1996 to 2012. In other cases, RMP use dropped from 1996 to 2005/06 but increased as information about glyphosate-resistant weeds spread. For example, herbicides other than glyphosate were applied on 93 percent of planted soybean acres in 1996, 29 percent in 2006, and then 56 percent in 2012. This chart is found in the April 2016 Amber Waves finding, “U.S. Corn and Soybean Farmers Apply a Wide Variety of Glyphosate Resistance Management Practices.”

Major crop producers apply most nitrogen fertilizer in the spring and after planting

Friday, April 22, 2016

Efficient nitrogen fertilizer applications closely coincide with plant needs to reduce the likelihood that nutrients are lost to the environment before they can be taken up by the crop. Fall nitrogen application occurs during the fall months before the crop is planted, spring application occurs in the spring months (before planting for spring-planted crops), and after-planting application occurs while the crop is growing. The most appropriate timing of nitrogen applications depends on the nutrient needs of the crop being grown. In general, applying nitrogen in the fall for a spring-planted crop leaves nitrogen vulnerable to runoff over a long period of time. Applying nitrogen after the crop is already growing, when nitrogen needs are highest, generally minimizes vulnerability to runoff and leaching. Cotton farmers applied a majority of nitrogen—59 percent—after planting. Winter wheat producers applied 45 percent of nitrogen after planting. Corn farmers applied 22 percent of nitrogen after planting, while spring wheat farmers applied 5 percent after planting. Farmers applied a significant share of nitrogen in the fall for corn (20 percent) and spring wheat (21 percent). Fall nitrogen application is high for winter wheat because it is planted in the fall. This chart is found in the ERS report, Conservation-Practice Adoption Rates Vary Widely by Crop and Region, December 2015.

Herd size plays significant role in U.S. dairy farm profitability

Tuesday, April 19, 2016

While some small U.S. dairy farms earn profits and some large farms incur losses, financial performance in the dairy sector, on average, is linked to herd size. Data from 2010 (the latest available for dairy farms by herd size) show that a majority of dairy farms with milking herds of at least 1,000 cows generate gross returns that exceed total costs, while most small and mid-size dairy farms do not earn enough to cover total costs. Total costs include annualized capital recovery as well as the cost of unpaid family labor (measured as what the farm family could earn off the farm), in addition to cash operating expenses. Many more small and mid-sized farms are able to cover total costs, except for costs associated with capital recovery. Farms can operate in this way for years, covering operating expenses and providing a reasonable income for a farm family, until the expense of maintaining aging equipment and structures begins to erode the incomes that a family can earn from the farm. At that point, many families may decide to close the farm. Some—particularly those where a younger generation intends to continue the business—may seek financing to expand the dairy herd and realize lower costs through scale economies. This chart is found in the ERS report, Changing Structure, Financial Risks, and Government Policy for the U.S. Dairy Industry, March 2016.

At least 48 percent of U.S. broilers were fed antibiotics only for disease-treatment purposes

Thursday, March 17, 2016

Livestock farmers use antibiotics to treat, control, and prevent disease, and also for production purposes, such as increasing growth and feed efficiency. A new U.S. Food and Drug Administration initiative seeks to eliminate the use of medically important antibiotics for production purposes. In the 2011 Agricultural Resource Management Survey (ARMS) on broilers (the most recent year available), producers were asked whether they raised their broilers without antibiotics in their feed or water unless the birds were sick, which implies not using antibiotics for growth promotion or disease prevention. In 2011, growers reported that about half of birds (48 percent) were only given antibiotics for disease treatment. This response also accounts for 48 percent of operations and 48 percent of production (by live weight). Approximately a third (32 percent) of operators stated that they did not know if they provided antibiotics via feed or water for purposes other than disease treatment; this means the proportion of reporting operations that only supplied antibiotics for disease-treatment purposes could be as high as 80 percent. Contracted growers (accounting for 96 percent of broiler production) may not know if antibiotics are in the feed provided by the company for whom they raise broilers. These statistics suggest that in 2011, between 20 and 52 percent of birds were given antibiotics for reasons other than disease treatment. This chart is found in the Amber Waves feature, “Restrictions on Antibiotic Use for Production Purposes in U.S. Livestock Industries Likely To Have Small Effects on Prices and Quantities,” November 2015.

Milk production and inventories continue shifting to larger herds

Friday, March 11, 2016

Two decades ago, most milk came from farms with fewer than 150 cows, on which a farm family handled milking, herd management, and crop production for feed. Today, while the United States still has many herds of 50 to 100 cows, most cows and milk production have moved to much larger farms, which are usually still owned and operated by families, but rely on hired labor for most farm tasks. Farms with milking herds of at least 1,000 cows accounted for nearly half of all cows in 2012, up from 10 percent of all cows in 1992. Producers continued to increase herd size in that period; there were 17 farms with herds of 4,000 or more cows in 1992, compared to 95 farms in 2002 and 234 in 2012. Costs are an important reason behind the shift, as production costs appear to be substantially lower, on average, on larger farms. The data underlying this chart are available in the ERS report, Changing Structure, Financial Risks, and Government Policy for the U.S. Dairy Industry, March 2016.

Southern regions in the U.S. have the highest rates of cover crop adoption

Tuesday, March 1, 2016

Cover crops are thought to play a role in improving soil health by keeping the soil “covered” when an economic crop is not growing. Cover crops reduce soil erosion, trap nitrogen and other nutrients, increase biomass, reduce weeds, loosen soil to reduce compaction, and improve water infiltration to store more rainfall. The 2010-11 Agricultural Resource Management Survey was the first USDA survey to ask respondents to report cover crop use (findings from the 2012 Agricultural Census—the most recent available—are similar). Approximately 4 percent of farmers adopted cover crops on some portion of their fields, accounting for 1.7 percent of total U.S. cropland (6.8 million acres) in 2010-11. Cover crop adoption was highest in the Southern Seaboard (5.7 percent) and lowest in the Heartland and Basin and Range (0.6 percent each). This distribution is likely due to the fact that cover crops are easiest to establish in warmer areas with longer growing seasons. Limited cover crop use overall, however, suggests that the benefits of cover crop adoption are being realized on few acres. This chart is from the ERS report, Conservation-Practice Adoption Rates Vary Widely by Crop and Region, December 2015.

Certified organic corn was planted later than GE corn in 2010 to avoid cross-pollination

Friday, February 26, 2016

U.S. farmers used genetically engineered (GE) seed varieties that contain traits to tolerate herbicides used for weed control and/or to resist other pests on over 90 percent of corn acreage in 2015. To receive the price premiums associated with organic and other non-GE crops, these producers must minimize the unintended presence of GE materials in their crops. Organic and other non-GE farmers use various practices—including the use of buffer strips to minimize pesticide/pollen drift and/or delaying crop planting until after any nearby GE crops are planted—to prevent their crops from commingling with GE crops. While some field crops are mostly self-pollinating, most corn pollination results from pollen dispersal by wind and gravity. In USDA’s most recent (2010) corn survey of conventional and organic producers in top corn producing States, delayed planting was reported on two-thirds of planted organic corn acreage. While this strategy helps protect against commingling of GE and non-GE crop pollen, growers may realize lower yields from planting at a suboptimal time. This chart is found in the ERS report, Economic Issues in the Coexistence of Organic, Genetically Engineered (GE), and Non-GE Crops, February 2016.

Tillage practices vary across the United States

Monday, February 1, 2016

No-till and strip-till are two of many tillage methods farmers use to plant crops. In a no-till system, farmers plant directly into the undisturbed residue of the previous crop without tillage, except for nutrient injection; in a strip-till system, only a narrow strip is tilled where row crops are planted. These tillage practices contribute to improving soil health, and reduce net greenhouse gas emissions. During 2010-11, about 23 percent of land in corn, cotton, soybeans, and wheat was on a farm where no-till/strip-till was used on every acre (full adopters). Another 33 percent of acreage in these crops was located on farms where a mix of no-till, strip-till, and other tillage practices were used on only some acres (partial adopters). In the Prairie Gateway, Northern Great Plains, and Heartland regions—which account for 72 percent of corn, soybean, wheat, and cotton acreage—more than half of these crop acres were on farms that used no-till/strip-till to some extent. Partial adopters have the equipment and expertise, at least for some crops, to use no-till/strip-till; these farmers may be well positioned to expand these practices to a larger share of cropland acreage. This chart is from the ERS report, Conservation-Practice Adoption Rates Vary Widely by Crop and Region, December 2015.

No-till and strip-till were widely used —although not predominantly— on U.S. crop acres in 2010-11

Tuesday, January 19, 2016

No-till and strip-till are two of several tillage methods farmers use to plant crops. These practices disturb the soil less than other methods, reducing soil erosion, helping maintain soil carbon, and can contribute to improved soil health. In a no-till system, farmers plant directly into the undisturbed residue of the previous crop without tillage, except for nutrient injection; in a strip-till system, only a narrow strip is tilled where row-crops are planted. Overall, 39 percent of the combined corn, soybean, wheat, and cotton acres (the four most widely grown crops in the U.S.) were in no-till/strip-till in 2010-11 (89 million acres per year), with adoption rates higher for some crops. Farmers may be more likely to use no-till/strip-till on crops that are thought to be well suited for the practices (e.g., soybeans) and more likely to use conventional tillage or other conservation tillage methods for crops where no-till/strip-till management is perceived as more risky (e.g., corn). Some farmers may also vary tillage based on field characteristics or weather. Tillage practices are often part of conservation plans that must be in use on highly erodible land to meet eligibility requirements (conservation compliance) for most Federal agricultural programs, including commodity programs and (after 2014) crop-insurance premium subsidies. This chart is from the ERS report, Conservation-Practice Adoption Rates Vary Widely by Crop and Region, December 2015.

More efficient irrigation methods are being adopted on farmland in the Western United States

Wednesday, January 6, 2016

About 75 percent of irrigated cropland in the United States is located in the 17 western-most contiguous States, based on USDA’s 2013 Farm and Ranch Irrigation Survey (the most recent available). Between 1984 and 2013, while the amount of irrigated land in the West has remained fairly stable (at about 40 million acres) and the amount of water applied has been mostly flat (between 70 and 76 million acre-feet per year), the use of more efficient irrigation systems to deliver the water has increased. In 1984, 71 percent of Western crop irrigation water was applied using gravity irrigation systems that tend to use water inefficiently. By 2013, operators used gravity systems to apply just 41 percent of water for crop production, while pressure-sprinkler irrigation systems (including drip, low-pressure sprinkler, or low-energy precision application systems), which can apply water more efficiently, accounted for 59 percent of irrigation water use and about 60 percent of irrigated acres. This chart is found in the ERS topic page on Irrigation & Water Use, updated October 2015.

Antibiotic use in U.S. hog production varies by age and purpose

Monday, November 30, 2015

Hog producers use Hog producers use antibiotic drugs to treat/control animal diseases, but they also feed them to their hogs to prevent disease and to promote faster growth through improved absorption of feed. There is growing concern that widespread use of antibiotics in humans and animals may encourage microbial resistance and make the drugs less effective for maintaining their health, and the U.S. Food and Drug Administration (FDA) is moving to end the growth-promotion uses of medically important antibiotics in animal agriculture. Antibiotic use varies across the hog sector, according to a USDA survey of hog producers, and the FDA’s action will affect some but not all producers. Over half of pigs in the nursery stage do not receive antibiotics for growth promotion, and that figure could be as high as 75 percent, because 26 percent of hogs were raised by growers that stated they did not know if antibiotics are in the feed. Some contract growers don’t know if antibiotics are in the feed provided by the company for whom they raise hogs. Antibiotics are more likely to be used for growth promotion in finishing hogs (those being fed to market weight), but even here at least 40 percent of hogs did not receive the drugs for growth promotion. This chart is found in the ERS report, Economics of Antibiotic Use in U.S. Livestock Production, ERR-200, November 24, 2015. antibiotic drugs to treat/control animal diseases, but they also feed them to their hogs to prevent disease and to promote faster growth through improved absorption of feed. There is growing concern that widespread use of antibiotics in humans and animals may encourage microbial resistance and make the drugs less effective for maintaining their health, and the U.S. Food and Drug Administration (FDA) is moving to end the growth-promotion uses of medically important antibiotics in animal agriculture. Antibiotic use varies across the hog sector, according to a USDA survey of hog producers, and the FDA?s action will affect some but not all producers. Over half of pigs in the nursery stage do not receive antibiotics for growth promotion, and that figure could be as high as 75 percent, because 26 percent of hogs were raised by growers that stated they did not know if antibiotics are in the feed. Some contract growers don?t know if antibiotics are in the feed provided by the company for whom they raise hogs. Antibiotics are more likely to be used for growth promotion in finishing hogs (those being fed to market weight), but even here at least 40 percent of hogs did not receive the drugs for growth promotion. This chart is found in the ERS report, Economics of Antibiotic Use in U.S. Livestock Production, ERR-200, November 24, 2015.

U.S. irrigated fieldcrop acreage projected to decline under climate change

Friday, November 27, 2015

Climate models predict U.S. agriculture will face significant changes in local patterns of precipitation and temperature over the next century. These climate changes will affect crop yields, crop-water demand, water-supply availability, farmer livelihoods, and consumer welfare. Irrigation is an important strategy for adapting to shifting production conditions under climate change. Using projections of temperature and precipitation under nine climate change scenarios for 2020, 2040, 2060, and 2080, ERS analysis finds that on average, irrigated fieldcrop acreage would decline relative to a reference scenario that assumes continuation of climate conditions (precipitation and temperature patterns averaged over 2001-08). Before midcentury, the decline in irrigated acreage is largely driven by regional constraints on surface-water availability for irrigation. Beyond midcentury, the decline reflects a combination of increasing surface-water shortages and declining relative profitability of irrigated production. This chart is from the ERS report, Climate Change, Water Scarcity, and Adaptation in the U.S. Fieldcrop Sector, ERR-201, November 2015.

Stacked GE varieties of corn have become commonplace

Tuesday, August 18, 2015

U.S. farmers have embraced genetically engineered (GE) seeds in the 20 years since their commercial introduction. Herbicide-tolerant (HT) crops, developed to survive application of specific herbicides that previously would have destroyed the crop along with the targeted weeds, provide farmers with a broader variety of options for effective weed control. Insect-resistant crops contain a gene from the soil bacterium Bacillus thuringiensis (Bt) that produces a protein that is toxic to specific insects, protecting the plant over its entire life. Seeds that have both herbicide-tolerant and insect-resistant traits are referred to as “stacked.” Based on USDA survey data, adoption of stacked GE corn varieties has increased sharply, reaching 77 percent of planted corn acres in 2015. Conversely, use of Bt-only corn dropped from 27 percent of planted corn acreage in 2004 to 4 percent in 2015, while HT-only corn dropped from 24 percent of planted corn acreage in 2007 to 12 percent in 2015. Generally, stacked seeds (seeds with more than one GE trait) tend to have higher yields than conventional seeds or seeds with only one GE trait. This chart is based on the ERS data product, Adoption of Genetically Engineered Crops in the U.S., updated July 2015.

Charts of Note header image for left nav