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Abstract

In 2010, a Total Maximum Daily Load (TMDL) was established for the Chesapeake 
Bay, defining the limits on emissions of nitrogen, phosphorus, and sediment necessary to 
reverse declines in the Bay’s quality and associated biological resources. Agriculture is the 
largest single source of nutrients and sediment in the watershed. We use data on crop and 
animal agriculture in the watershed to assess the relative effectiveness of alternative policy 
approaches for achieving the nutrient and sediment reduction goals of the TMDL, ranging 
from voluntary financial incentives to regulations. The cost of achieving water quality goals 
depends heavily on which policy choices are selected and how they are implemented. We 
found that policies that provide incentives for water quality improvements are the most 
efficient, assuming necessary information on pollutant delivery is available for each field. 
Policies that directly encourage adoption of management systems that protect water quality 
(referred to as design-based) are the most practical, given the limited information that is 
generally available to farmers and resource agencies. Information on field characteristics 
can be used to target design-based policies to improve efficiency. 
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What Is the Issue?

In 2010, the U.S. Environmental Protection Agency established limits for nutrient and sedi-
ment emissions from point (i.e., wastewater treatment plant) and nonpoint (i.e., agricultural 
runoff) sources to the Chesapeake Bay in the form of a Total Maximum Daily Load (TMDL). 
Agriculture is the largest single source of nutrient emissions in the watershed. The TMDL 
specifies that two issues facing agriculture need to be addressed if the TMDL’s nutrient limits 
are to be met. First, farmers can increase their use of the most effective nutrient management 
practices, such as cover crops. Second, assuming animal numbers in the watershed do not 
change, reducing the amount of manure applied to farmland necessitates moving manure to 
areas with cropland that can safely receive manure nutrients as a substitute for commercial 
fertilizer. Both entail costs.

Different policy approaches can be used to achieve the nutrient limits of the TMDL, ranging 
from financial incentives to regulations. The cost of achieving water quality goals depends 
heavily on which policy choices are selected and how they are implemented.

What Did the Study Find?

Our assessment of policy instruments for achieving the TMDL goals on cropland in the 
Chesapeake Bay watershed includes performance-based regulations (emission limits), perfor-
mance-based incentives (emission taxes), design-based standards (regulations on practices 
or inputs), and design-based incentives (payments for conservation practices). Our analysis 
focuses on the difference in costs between scenarios, rather than the absolute cost of any one 
policy scenario. These differences enable us to identify which policy design features lead to a 
more cost-effective solution. 

Performance-based policies use measures of pollutant delivered to receiving waters as the 
basis for policy. The lowest cost (“optimal”) option among all approaches meets TMDL goals 
by treating only 12 percent of the watershed’s cropland—those acres that can reduce the most 
pollutants at the least cost. Performance-based policies are difficult to implement for nonpoint-
source pollution because pollutant discharge cannot be easily measured and regulators lack the 
information necessary to set optimal performance goals. 

An alternative is to focus on inputs and management practices, which are more easily 
observed by both resource management agencies and farmers. Practices can be required 
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through regulation or encouraged through financial incentives. These design-based policies can be made more 
efficient through targeting. In particular, requiring best management practices—a combination of cover crops, 
nutrient management, and erosion controls—on land adjacent to water that also has a treatment need according 
to USDA’s Natural Resources Conservation Service (NRCS) criteria met TMDL goals for a quarter of the cost 
of implementing the full suite of management practices on all cropland. Still, the most efficient design-based 
approach was 4-5 times more expensive than the optimal performance-based approach and treated more than 
twice as much land.

Another incentive system for Bay-area farmers to reduce their pollutant levels is the establishment of water quality 
trading. Trading is already used by some States to enable wastewater treatment plants and other point sources to meet 
TMDL limits without costly upgrades. Trading also offers an economic incentive to farmers to implement water qual-
ity-improving practices they might not otherwise adopt. Trading program rules developed by Maryland, Pennsylvania, 
and Virginia all require that fields achieve a certain level of nutrient management before being able to generate credits, 
thus ensuring that abatement contributed by agriculture is “additional.” However, requiring more of farmers in order to 
trade can discourage them from participating.

With a daily inventory of roughly 2.0 billion pounds of poultry, dairy, swine, and feedlot beef, animal agriculture 
is a significant source of nutrient loadings to the Bay, contributing an estimated 17 percent of the nitrogen entering 
the Bay and 26 percent of the phosphorus. Animal operations produce roughly 99,400 tons of recoverable manure 
nitrogen and 44,200 tons of recoverable manure phosphorus annually, which is often more than can be safely used 
by crops grown on the land managed by the livestock operation. Removing excess manure nutrients from farms in 
the Chesapeake Bay watershed and moving it to where it can be used efficiently costs an estimated $15 million to 
$27 million per year. 

Manure hauling costs decrease with the willingness of crop producers to use manure. An increase in the share of 
cropland using manure from 30 to 90 percent reduces hauling costs in the watershed about 15 percent. Education 
and technical/financial assistance for manure management could increase the willingness of crop producers to 
substitute manure for commercial fertilizers.

Using manure as an energy source could absorb some of the excess manure nutrients and reduce regional hauling 
costs if the economics are favorable and concerns over air quality are adequately addressed. However, demand for 
manure as an energy source could increase costs for crop producers who utilize manure as a nutrient source, either 
through higher manure prices or through the need to purchase inorganic fertilizers. Our findings suggest that the 
value of manure as a source of crop nutrients would exceed the reduction in hauling costs. But this negative impact 
on agriculture would have to be weighed against the benefits provided by local energy production.

How Was the Study Conducted?

To evaluate the costs of improved nutrient management on cropland, the study used data from NRCS’s Conservation 
Effects Assessment Project (CEAP). Cropping practice data, simulated nutrient emissions to water (also from 
CEAP), and practice cost data from a number of sources were used to build a model to evaluate different policy 
scenarios for meeting TMDL goals, subject to policy constraints.

The CEAP data and the optimization model were also used to examine the implications of baseline choice in a 
point/nonpoint trading program. The data and model were used to estimate nitrogen abatement supply curves for 
different baseline assumptions. An offset demand curve for publicly owned wastewater treatment plants was esti-
mated by the World Resources Institute using data from the Chesapeake Bay Program. To evaluate the cost of 
achieving a manure nutrient balance in the watershed, the study used an ERS optimization model of the Chesapeake 
Bay watershed that minimizes manure hauling and application costs and is based on a county-level dataset of 
manure nutrients and available cropland that NRCS developed from the 2007 Census of Agriculture.
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An Economic Assessment of Policy  
Options To Reduce Agricultural Pollutants 
in the Chesapeake Bay 

Introduction

The Chesapeake Bay is North America’s largest and most biologically diverse estuary. Its watershed 
covers 64,000 square miles across 6 States (Delaware, Maryland, New York, Pennsylvania, Virginia, 
and West Virginia) and the District of Columbia and is home to more than 17 million people. For 
over 200 years, the Chesapeake Bay has provided a rich bounty of crabs, shellfish, and fish, as well 
as high-quality recreational opportunities. However, as the region’s population grew and land was 
converted from forests to farms and urban development, the quality of the Bay’s waters declined 
along with many of its living resources. Since the 1970s, the Clean Water Act has facilitated signifi-
cant reductions in polluting emissions from sewage treatment plants, factories, and other point 
sources of pollution in the Bay watershed, but point sources are only part of the problem in meeting 
established water quality goals. In particular, continued heavy nutrient and sediment runoff from 
nonpoint sources has contributed to low oxygen levels, algal blooms, decreased water clarity, loss 
of submerged aquatic vegetation, and declines in fish and shellfish populations (U.S. EPA, 2011). In 
2010, only 18 percent of tidal waters met or exceeded guidelines for water clarity; only 38 percent of 
the Bay and its tidal tributaries met Clean Water Act standards for dissolved oxygen; and more than 
half of stream health scores at monitoring sites were poor (Chesapeake Bay Program, 2011). 

The history of efforts to restore the ecosystem of the Chesapeake Bay is emblematic of a general 
failure to solve the agricultural nonpoint-source (NPS) problem. The Bay has been a focal point of 
Federal and State initiatives to reduce nutrient and sediment pollution from agriculture and other 
sources for almost 30 years (see box, “History of Chesapeake Bay Restoration Efforts”). Beginning 
in 1983, successive agreements between the U.S. Environmental Protection Agency (EPA); the 
Governors of Maryland, Pennsylvania, Virginia, West Virginia, Delaware, and New York; and 
the Mayor of the District of Columbia established the Chesapeake Bay Program, set nutrient and 
sediment reduction goals, and developed strategies that rely heavily on voluntary approaches for 
reducing nutrient and sediment emissions. The U.S. Department of Agriculture (USDA)—along 
with EPA and the watershed States—has made large public investments to improve the manage-
ment of agricultural resources and to reduce agriculture’s negative impact on environmental quality. 
Monitoring data and model estimates based on land use changes observed between 1985 and 2009 
indicate some reductions in nutrient and sediment loads (National Research Council, 2011). Despite 
this progress, the biological health of the Bay remains poor (CBP, 2011). 

In 2009, President Barack Obama issued the Chesapeake Bay Protection and Restoration Executive 
Order, which calls for the Federal Government to lead a renewed effort to restore and protect the 
Bay and its watershed. In 2010, the U.S. EPA established a Total Maximum Daily Load for the Bay 
(see box, “The Total Maximum Daily Load”). It sets emission limits for nitrogen, phosphorus, and 
sediment across the Bay jurisdictions that are believed necessary to meet applicable water quality 
standards in the Bay and its tidal rivers and embayments. 
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The Chesapeake Bay TMDL is the largest ever developed by the U.S. EPA, in terms of geographic 
coverage. Meeting the emission limits requires basinwide reductions in nitrogen, phosphorus, and 
sediment of 25 percent, 24 percent, and 20 percent from 2009 loads, respectively (U.S. EPA, 2010b). 
States are to have in place all pollution control measures needed to meet the TMDL by 2025. 
Because of agriculture’s significant share of pollutant contributions, meeting the TMDL goals will 
not be possible without changes in the way agriculture is conducted in the watershed. The TMDL is 
forcing States to consider expanding the set of policy approaches that have been traditionally applied 
to agricultural nonpoint-source pollution. 

History of Chesapeake Bay Restoration Efforts

In 1976, Congress directed the U.S. Environmental Protection Agency (EPA) to undertake a 
comprehensive study of the Bay’s condition and what measures would be necessary to restore it 
to its former health. That effort culminated in the 1983 report, Chesapeake Bay: A Framework 
for Action, which described the state of the Bay’s ecosystem, its change over time, and scien-
tific evaluations of the Bay’s functions in relation to its condition (U.S. EPA, 1983). The report 
established a regional management framework for addressing some of the Bay’s most significant 
problems. Among the recommendations made in the report was for Bay watershed States to 
take action to reduce pollution—primarily excess nutrients and sediment—from agricultural 
and urban sources.

The first Bay agreement in 1983—between Maryland, Virginia, Pennsylvania, the District of 
Columbia, and the U.S. EPA—simply acknowledged there was a problem and called for the 
development of plans to address excess nutrient and sediment pollution (CBP, 1983). In 1987, 
a new agreement set a goal of reducing controllable nitrogen and phosphorus loads delivered 
to the Bay by 40 percent by 2000 (CBP, 1987). A 1991 evaluation led to an increased focus on 
Bay tributaries and added the program goal of expanding the total area of submerged aquatic 
vegetation (CBP, 1992). 

An evaluation in 1997 found some progress toward reducing nitrogen and phosphorus, but 
concluded that restoration efforts needed to accelerate in order to both maintain what had 
been achieved and to meet the 2000 goals (CBP, 1999). In 2000, a new agreement—joined by 
Delaware, New York, and eventually West Virginia—reaffirmed the 40-percent reduction goal 
and targeted 2010 for progress sufficient to remove the Bay and tributary waters from the U.S. 
EPA list of impaired waters (CBP, 2000). 

By 2006, the Bay jurisdictions had developed Tributary Strategies that outlined river basin-
specific implementation activities for reducing nitrogen, phosphorus, and sediment loads from 
point and nonpoint sources. Implementation strategies for nonpoint sources relied almost exclu-
sively on voluntary approaches. A 2007 evaluation concluded that insufficient progress was 
being made toward load reductions (CBP, 2007), prompting President Obama’s Executive Order 
(13508) in 2009, which calls for the Federal Government to lead a renewed effort to restore and 
protect the Bay and its watershed. The Chesapeake Bay TMDL was finalized in 2010. 
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Current Status of Policies for Reducing Agricultural Impact on 
Water Quality 

Agriculture is the largest contributor of nutrients and sediment to the Bay. Crop production and 
animal operations contributed about 38 percent of total nitrogen loads, 45 percent of total phos-
phorus loads, and 60 percent of total sediment loads in 2007 (National Academy of Sciences, 2011). 
The Clean Water Act is the main Federal law for addressing water pollution. However, nonpoint 
sources such as crop production are exempt from the permitting requirements of the Act. The burden 
of pollution reduction is on point sources, which are regulated by the National Point Discharge 
Elimination System (NPDES). U.S. EPA estimates that only 49 percent of nitrogen, 35 percent of 
phosphorus, and 4 percent of sediment loads entering the Bay are subject to Federal regulation (U.S. 
EPA, 2010a). The remainder must be addressed through non-regulatory provisions of the Clean 
Water Act, voluntary conservation programs administered by USDA, and State policies.

The Bay Total Maximum Daily Load

A Total Maximum Daily Load (TMDL) is a calculation of the maximum amount of a 
pollutant that a water body can receive and still meet water quality standards. TMDLs are 
intended to be the common basis for control of point and nonpoint sources of pollution for 
surface waters that are designated as impaired under Section 303(d) of the Clean Water Act.

The TMDL provisions of the Clean Water Act (CWA) are designed as a second line of defense 
for protecting the quality of surface-water resources. Section 402 of the CWA established the 
National Pollutant Discharge Elimination System (NPDES) to restrict the discharge of pollut-
ants from municipal and industrial dischargers. Each point source must obtain a discharge 
permit before it can discharge wastes into surface water. The permit requires dischargers to 
comply with technology-based controls (uniform, U.S. EPA-established standards of treatment 
that apply to certain industries and municipal sewage treatment facilities) or water quality-
based controls that invoke State numeric or narrative (qualitative) water quality standards. 

Section 305(b) of the CWA requires States to report to Congress every 2 years which waters 
are meeting water quality standards and which are not meeting the standards. When tech-
nology-based controls are inadequate for waters to meet State water quality standards, Section 
303(d) of the CWA requires States to submit to the U.S. EPA a list of impaired waters and 
the cause of the impairment. Once listed as impaired, a TMDL may be required, along with a 
plan to mitigate the impairment and meet the applicable water quality standard.

Developing a TMDL involves calculating the maximum amount of a pollutant that a water 
body can receive and still meet water quality standards, and allocating pollutant loads to the 
various sources. The TMDL for the watershed is the sum of individual wasteload allocations 
for point sources, load allocations for nonpoint sources and natural sources (i.e., runoff from 
undisturbed forests and other natural areas), and a margin of safety. Waste load allocations for 
point sources are met through the NPDES permit, which is regulatory in nature. Load alloca-
tions for nonpoint sources can be met through regulatory or voluntary approaches developed 
by the States. Since the Clean Water Act specifically bars the use of Federal regulations to 
reduce nonpoint-source pollution, regulations would have to originate at the State level.
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Prior to the TMDL, the Bay States relied heavily on traditional USDA conservation programs, which 
use financial incentives to encourage farmers to voluntarily adopt management measures consistent 
with the goals laid out by the various Chesapeake Bay agreements. These conservation programs 
include the Environmental Quality Incentives Program (EQIP), the Conservation Reserve Program 
(CRP), and the Conservation Reserve Enhancement Program (CREP). Watershed Implementation 
Plans (WIPs), developed by the Bay Watershed States outlining their strategies for meeting the 
TMDL, show a continued reliance on Federal and State financial assistance for practices such as 
cover crops on cropland. However, exclusive reliance on such policies has not been effective in 
improving water quality (Shortle et al., 2012). Despite years of conservation expenditures, nearly 90 
percent of cropland in the Bay watershed is in need of additional nutrient or sediment management 
measures (USDA, NRCS, 2011). High expected costs and farmer resistance have hindered the use of 
practices necessary to reduce agricultural runoff (Bosch et al., 1992; Osmond et al., 2012).

All of the Bay States have developed or are developing water quality trading programs. Trading 
programs provide regulatory flexibility for point sources, allowing them to purchase abatement 
from other sources, including nonpoint sources, that exceed a compliance baseline. Ideally, trading 
reduces the cost of meeting TMDL goals and increases abatement by nonpoint sources. Each State 
has its own set of rules for establishing eligibility (baselines) and calculating credits or offsets. 
Program design plays a critical role in the attractiveness of trading to potential program participants 
and their ability to meet their TMDL goals.

In this report, we focus on two issues. Not enough cropland is under the most effective (best) 
management practices for protecting water quality (USDA, NRCS, 2011; U.S. EPA, USDA, 2006; 
NRC, 2011; Lichtenberg et al., 2010), and the State WIPs seek to redress that. A model built with 
data compiled specifically for the Chesapeake Bay watershed enables us to evaluate the efficiency 
characteristics of different policy instruments for achieving TMDL goals for nutrient and sediment 
emissions. The policy instruments examined span those contained in the State WIPs as well as alter-
natives, and include regulation, taxes, financial incentives, and water quality trading.

Animal operations in the Bay watershed generally produce more manure nutrients than can be 
assimilated by the crops grown on the operation, and addressing this imbalance is another goal 
of the State WIPs. Farm-level implementation of improved nutrient management practices on 
cropland cannot be effective on these operations until the problem of excess manure production 
is addressed. A model built with data on animal operations in the watershed helps to evaluate 
the cost of balancing manure production and manure-nutrient demand by redistributing manure 
around the watershed. 
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Policy Instruments for Reducing Agricultural Pollution

Farmers operate in a profit-seeking framework. They consider input and output prices and their 
resource base when making decisions about what mix of crops to grow and how to grow them. In 
this simple framework, the cost of nutrient or sediment runoff of nutrients or sediment from fields is 
not considered, as farmers typically do not bear the downstream costs these pollutants may impose. 
The goal of nonpoint-source policy is to induce farmers who cause water quality damages through 
their production and management decisions to adopt pollution prevention and control measures that 
are consistent with societal goals (in this case defined by the TMDL). Policymakers can consider 
a range of policy instruments to accomplish this, from purely voluntary to regulatory. Selecting a 
policy approach for reducing agricultural nonpoint-source pollution requires making several choices:  
whom to target, what to target, and what stimulus to use.

Whom To Target

Cost-effective control of nonpoint-source pollution acknowledges the heterogeneity of agriculture 
by promoting different environmental performance goals for different farms so as to minimize 
costs over the landscape (also known as allocative efficiency). A long line of research has found that 
certain cropland—defined in terms of resource characteristics, farming practices, and geographic 
location—tends to contribute a disproportionate share of pollutants degrading a water resource 
(Ribaudo, 1986; 1989; Veith et al., 2004; Diebel et al., 2008). A policy promotes cost-effectiveness 
when it adequately accounts for the variation in each farm’s water quality impacts and abatement 
costs (Babcock et al., 1997; Braden et al., 1989; Claassen and Horan, 2001; Fleming and Adams, 
1997). For example, in the Chesapeake Bay watershed, onsite losses of nutrients and sediment differ 
widely by watershed, defined here as a 4-digit HUC1 (table 1) (USDA, NRCS, 2011). Pre-TMDL 
per-acre losses of nitrogen, phosphorus, and sediment are highest in the Susquehanna watershed 
(HUC 205), followed by the Potomac watershed (HUC 207). 

However, assigning responsibility for nonpoint source pollution loads is difficult. Runoff does not 
emanate from a single point, but leaves each field in so many places, often unseen, that accurate 
monitoring would be prohibitively expensive (Braden and Segerson, 1993; Shortle and Abler, 1997). 
The amount and nature of runoff leaving a field depend not only on factors that can be measured, 
such as the technology employed and the use of variable inputs, but also on factors such as rainfall 
that vary daily and are difficult to predict (Braden and Segerson, 1993; Shortle and Abler, 1997). 

Uncertainty about who is responsible and the degree of responsibility creates problems for efficient 
nonpoint-source policy design. Requiring farmers who are not contributing to the problem to adopt best 
management practices reduces program cost-effectiveness. Similarly, not covering those farmers who 
can provide the greatest reductions at the lowest cost also reduces cost-effectiveness. The difficulty in 
identifying which producers are producing the most pollution is an often-cited reason why voluntary 
actions are the tools of choice in existing nonpoint-source programs (Shortle and Horan, 2001).

1Hydrologic Unit Code (HUC) is a classification system used by the U.S. Geological Survey to catalog watersheds. A 
4-digit HUC, of which there are 221 in the United States, is a subregion that includes the area drained by a river system, 
a reach of a river and its tributaries, a closed basin, or a group of streams forming a coastal drainage area (Seaber et al., 
1987). The Chesapeake Bay watershed is made up of four 4-digit HUCs:  Susquehanna (0205), Potomac (0206), Upper 
Chesapeake (0207), and Lower Chesapeake (0208).
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What To Target

Since the goal of a nonpoint-source policy for the Chesapeake Bay watershed is to improve water 
quality in the Bay, the ideal policy would base incentives (positive or negative) on pollutant delivery 
to tidal waters (Oates, 1995). However, measuring nonpoint-source emissions is extremely difficult 
and costly, making actual emissions delivery impractical to use in a policy. Alternative instruments 
should be highly correlated with environmental conditions, enforceable, and targetable in time and 
space (Braden and Segerson, 1993).

One option is using estimated loadings within the tidal waters of the Bay. The development of 
accepted field- and watershed-level modeling tools allows estimated emissions to be used as a policy 
base. For example, estimates of soil erosion from the Universal Soil Loss Equation are being used 
in USDA conservation compliance policy (Code of Federal Regulations, 1996). Emissions esti-
mates from models such as the Nutrient Tracking Tool developed by USDA’s Natural Resources 
Conservation Service (NRCS) and the Agricultural Policy Environmental Extender (APEX) could 
be used as a basis for policies addressing nutrient pollution. Shortcomings of this approach include 
the need to run the model for each farm and multiple farming options, which increases transac-
tion costs. Also, estimates of runoff are available only for the management choices contained in the 
model. And the degree of uncertainty surrounding model estimates would need to be accounted for 
in setting policy.

Other policy design options are to directly influence the inputs or farming practices that are corre-
lated with pollutant flows. These may include inputs such as fertilizer, pesticides, or irrigation water, 
and practices such as conservation tillage and nutrient management. Farming practices are gener-
ally easier to observe. The drawback of input- or design-based options is that they do not account 
for factors between the field and the receiving waters (i.e. slope and vegetation) that influence water 

Table 1 

Average annual baseline losses at edge of field, by sub-basin  
(4-digit Hydrologic Unit Code (HUC))

Loss pathway
HUC 205

Susquehanna

HUC 206
Upper  

Chesapeake
HUC 207
Potomac

HUC 208
Lower  

Chesapeake Basin

Nitrogen loss (lbs./acre)

Surface runoff 12.9 5.4 8.3 4.9 8.9

Subsurface 43.2 25.7 32.5 18.2 32.7

Total 56.1 31.1 40.8 33.1 41.6

Phosphorus loss (lbs./acre)

Surface runoff 5.25 2.07 4.39 1.67 3.67

Subsurface .08 .06 .07 .06 .07

Total 5.33 2.13 4.46 1.73 3.74

Sediment (tons/acre) 2.05 0.43 1.02 0.43 1.18

Source:  USDA, Natural Resources Conservation Service, 2011
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pollution in the Bay (the policy goal). Policies designed around factors that are more correlated with 
emissions are more efficient (Ribaudo et al., 1999). 

What Type of Incentive

The policy stimulus is the incentive the producer responds to when making management choices. 
The least intrusive instruments are public persuasion combined with education and technical assis-
tance (Horan and Shortle, 2001). Under such a policy, producers would not have to participate, 
although those who stand to benefit economically from a change in management may opt to do so. 
Such policies have been a mainstay of USDA conservation policies for decades. However, education 
and technical assistance have been shown to have limited effects on managing nonpoint pollution 
when not paired with other policy instruments (Ribaudo and Horan, 1999). 

Regulations on inputs, management practices, or estimated emissions provide more direct stim-
ulus. For a regulation on inputs or management practices (design-based policy) to be efficient, all 
polluting inputs used by farmers would have to be controlled (Ribaudo et al., 1999). Such regulations 
tend to be inflexible, and to be efficient the regulator would need to know practice costs as well as 
their impacts on pollutant delivery. A regulation on estimated emissions (performance-based policy) 
provides more flexibility to farmers, but requires models that farmers can use to estimate how their 
management choices affect emissions.

Farmer decisions can also be influenced through economic incentives like taxes on estimated emis-
sions or polluting inputs, subsidies for management practices that improve water quality, and markets 
for trading pollution allowances. For measured or estimated delivered emissions, only a single tax 
(on emissions) or subsidy rate (on abatement) for each pollutant is needed to achieve an efficient 
allocation of abatement. For inputs, however, a system of taxes for polluting inputs and incentives for 
abating practices needs to be applied for the policy to be efficient, and the rates would vary for each 
farm to account for differences in delivery, making such an approach far more complex (Ribaudo et 
al., 1999). In general, incentives are more flexible than standards, as farmers choose the best way to 
manage their operations given the incentives. 

Comparing Policy Instruments

Different policy instruments address the “Who, What, and How” questions in different ways, with 
implications for economic performance. Performance-based policies targeting pollution emissions 
are generally more efficient (Ribaudo et al., 1999), designed as they are to achieve a specific envi-
ronmental performance measure rather than to simply encourage the adoption of certain manage-
ment practices. The choice of how to meet the performance measure is left entirely to the farmer, 
who has better information than resource managers on how changes in practices affect costs. 
Performance-based policies include emission limits, pollution taxes, and payments for improved 
water quality. Properly designed, such policies automatically allocate pollution control to those 
farms and fields that can provide the most reductions at least cost (the “Who” and “What”). They 
also promote the greatest flexibility in achieving policy goals, which leads to the most efficient poli-
cies (Ribaudo et al., 1999). 

Because nonpoint-source emissions cannot be observed or are too costly to measure, performance-
based policies have rarely been applied to nonpoint-source pollution. Instead, nonpoint-source poli-
cies tend to be design-based, pegged to a producer’s variable input use and production practices. 
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Policies based on expected emissions, estimated with models, provide some of the flexibility offered 
by performance-based policies. Point/nonpoint trading markets fall in this category, as models are 
used to estimate the performance of practices installed for the purpose of creating credits. The cost 
of developing models may be high, but once developed, the cost of applying them should be low. 

Design-based regulations can be cost-effective, but this requires precise targeting of specific prac-
tices to each field. Efficiency requires that the regulator have information on the abatement costs of 
each farm, which is privately held and may be difficult to obtain. Efficiency is reduced the greater 
the heterogeneity of land, the more uniformly instruments are applied across regions, the fewer 
polluting inputs that are controlled, and the greater the uncertainty of the resource management 
agency about the performance of best management systems (BMSs).2 Standards also limit flexibility, 
although they are relatively easy to implement. Regulations applied to agriculture generally take this 
form. Common examples include requirements for nutrient management plans, bans on applying 
manure to frozen fields, required use of vegetative filter strips, and limits on chemical applications in 
aquifer recharge zones.

Design-based economic incentives such as cost-sharing promote the voluntary adoption of desirable 
practices. Historically, financial assistance (cost sharing) has been the primary policy instrument for 
inducing farmers to adopt management practices that reduce nonpoint-source pollution. A successful 
and efficient financial assistance approach would require practice- and region-specific payment 
rates that are high enough to entice farmers to participate and to adopt the most cost-effective prac-
tices. Payments may have to continue for as long as practices are maintained (current conservation 
programs offer only short-term contracts). Research has found that nonstructural management prac-
tices, such as nutrient management, are more likely to be discontinued after cost-share funding ends 
than structural practices (Jackson-Smith et al., 2010), and that farmers often find nutrient manage-
ment difficult to implement (Genskow, 2012; Osmond et al., 2012). Paying farmers to adopt practices 
they would not ordinarily adopt on their own could be very expensive given the improvements still 
needed to attain water quality goals in the Bay, and raises questions about the fairness of paying 
farmers for pollution abatement while regulated point sources must bear the cost of abatement. Such 
an approach may also be at odds with the large budgetary imbalances currently affecting Federal 
and State finances.

2We refer to Best Management Systems instead of the more common Best Management Practices (BMP). The manage-
ment improvements in our analysis consist of suites of practices rather than a single practice.
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Evaluation of Policy Instruments for Meeting TMDL Goals

Our assessment of policy instruments for achieving the TMDL goals on cropland in the Chesapeake 
Bay watershed includes performance-based regulations (emission limits), performance-based 
incentives (emission taxes), and design-based standards (regulations on practices or inputs). These 
policies include those currently included in State Watershed Implementation Plans (WIPs) as well 
as some that are not being considered. The strength of our analysis is in estimating the differ-
ence in costs between policy scenarios, rather than in our assessment of the absolute cost of any 
one scenario. These differences enable us to identify which policy design features are more cost-
effective. While our analysis does not mimic the State Watershed Implementation Plans, our esti-
mates do provide a measuring stick for the costs of reducing agricultural nonpoint-source pollution 
by an amount broadly consistent with what is being asked of agriculture to meet Bay water quality 
goals. The estimates reflect a stylized assessment in which the watershed is treated as one political 
jurisdiction and provide policymakers with information about the extent to which alternative policy 
approaches might deviate from the least-cost solution. 

Data

The NRCS Conservation Effects Assessment Project (CEAP) for the Chesapeake Bay watershed 
provides the data for our crop-sector analysis (see box, “CEAP Data”). The data consist of 756 field-
level survey observations from 2003-2006 containing information on baseline crop acreages, input use, 
conservation practices, estimated edge-of-field nutrient and sediment losses, and estimated delivery of 
those materials to the tidal waters of the Bay. In addition, the data contain estimated nutrient and sedi-
ment delivery for three “enhanced” management practices—cover crops, nutrient management, and 
water erosion controls—that could be added to baseline practices. The 756 sample points are treated 
as representative farms that capture regional variation in resource endowments and base technology 
use. We use these representative farms to evaluate a suite of performance- and design-based policy 
options for meeting the TMDL (see box, “Model Management Practice Choices”). Baseline observa-
tions without any of these practices could receive all the practice combinations. Baseline observations 
already receiving the full suite of practices would not receive any additional practices. 

Over 57 percent of cropland in the Chesapeake Bay watershed was not under any of the three 
management systems in 2006 (table 2). About 20 percent had only water erosion controls, and 12 
percent had only nutrient management. Very few cropland acres had more than one system in place 
prior to the TMDL. (A follow-up CEAP survey was conducted in 2011 to track changes in manage-
ment between 2006 and 2011, see box, “2011 CEAP Update.”)

Up to 8 different sets of conservation systems are possible for each of the 756 sampling points, 
depending on baseline practices: 

• No enhanced conservation system
• Cover crops 
• Nutrient management practices
• Water erosion control
• Water erosion control plus cover crops 
• Water erosion control plus nutrient management
• Nutrient management plus cover crops
• Nutrient management plus cover crops plus water erosion control.



10 
An Economic Assessment of Policy Options To Reduce Agricultural Pollutants in the Chesapeake Bay, ERR-166 

Economic Research Service/USDA

The field-level effects of current conditions and the alternative management scenarios on edge-of-
field nitrogen, phosphorus, and sediment losses (and delivery to the tidal waters of the Bay) are 
assessed for each observation by NRCS using a system of models (see box, “CEAP Data”)3. The 
modeling accounts for any interactions from adopting multiple practices. 

3An alternative approach for estimating the nutrient loadings would have been to apply the Chesapeake Bay watershed 
model used by EPA to track changes in loadings within the Chesapeake Bay watershed and to track the progress States 
are making in implementing their WIPs. We chose to use the NRCS modeling system to estimate changes in loadings 
because it provides field-level output (the EPA model is a county-level model) and thus is better suited to make full use of 
the richness of the field-level data provided by the CEAP survey. This approach was critical for providing information on 
the cost-effectiveness of field-level targeting for practices.

CEAP Data

The Conservation Effects Assessment Project (CEAP) was initiated in 2002 by USDA’s Natural 
Resources Conservation Service (NRCS), Agricultural Research Service, and the National 
Institute of Food and Agriculture to evaluate the benefits from resource conservation on agricul-
tural lands. A series of large watershed-scale studies was conducted as part of CEAP to focus on 
the water quality benefits from conservation systems. The focus of the CEAP Chesapeake Bay 
study is on the 4.4 million acres of cultivated cropland in the watershed. 

A survey of farmers obtained information on the extent of conservation practice use in the 
watershed over 2003-2006. The National Resources Inventory (NRI)—a statistical survey of 
conditions and trends in U.S. soil, water, and related resources on private lands conducted by 
NRCS since the 1970s—provided the statistical framework. The CEAP-NRI survey collected 
detailed production and conservation management data for crop fields in the NRI over crop years 
2001-2006. The statistical properties of the observations capture the distribution of practices on 
all agricultural lands within each four-digit hydrologic unit code (HUC) in the Bay watershed. 
We restricted our analysis to major field crops, which constituted 97.9 percent of crop acres in 
the watershed. We excluded fields planted to vegetables, as we have less confidence that our cost 
data are representative of these specialized crops. This left us with 756 observations. 

The CEAP data also contain model estimates of erosion and nutrient emissions from fields under 
both the baseline and alternative management systems. Field-level effects of conservation prac-
tices were assessed using the Agricultural Policy Environmental Extender (APEX) (Williams 
et al., 2008; Gassman et al., 2009). APEX is a field-scale physical process model that simulates 
day-to-day farming activities, wind and water erosion, loss or gain of soil organic carbon, and 
edge-of-field losses of soil, nutrients, and pesticides. APEX also estimates crop yields for a given 
set management choices. The impact of field-level emissions on loadings of nitrogen, phos-
phorus, and sediment within the watershed and to the tidal waters of the Bay was simulated with 
the Hydrologic Unit Model for the United States (HUMUS) (Arnold et al., 1999; Srinivasan et 
al., 1998). Within HUMUS, the Soil and Water Assessment Tool is used to route instream loads 
from one watershed to another (Gassman et al., 2007; Arnold and Fohrer, 2005). 

Weather is a predominant factor in determining the emissions of nutrients and sediment 
from cropland. To capture the effects of weather, each scenario was simulated using 47 
years (1960-2006) of daily weather data. The estimates used in our analysis are the means 
of these simulations.
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Model Management Practice Choices

Cover crops. Cover crops are planted when the principal crops are not growing to provide 
soil surface cover and reduce erosion, and to withdraw excess nutrients remaining in the soil, 
preventing them from leaching or running off to surface water. In our model:

• For sample points in the baseline without a cover crop in the rotation, rye was planted as 
the cover crop. 

• The cover crop is planted the day after harvesting the main crop or the day after the last 
major fall tillage practice. 

• The cover crop is not harvested for sale.

Nutrient management. Nutrient management is defined in terms of the appropriate rate, 
timing, and method of application for all crops in the rotation. In our model:

• All commercial fertilizer is applied 14 days prior to planting, except for acres susceptible to 
leaching loss.

• For acres susceptible to leaching, nitrogen was applied in split applications.

• Manure applications during winter months are moved to the spring.

• All fertilizer and manure are incorporated or injected.

• All nitrogen application rates for all crops except cotton and small grains are limited to 1.2 
times the crop removal rate. For small grains, nitrogen applications are limited to 1.5 times 
the crop removal rate. For cotton, nitrogen applications are limited to 50 pounds per bale. 

• Phosphorus application rates are adjusted to be equal to 1.1 times the amount removed in 
the crop at harvest.

Water erosion control. Water erosion controls reduce sediment loss by reducing field slopes, 
reducing the length of time a field is without plant cover, or trapping sediment in runoff. In our 
model:

• Terraces are added to all sample point with slopes greater than 6 percent, and to those 
with slopes greater than 4 percent and a high potential for excessive runoff (hydrologic soil 
groups C or D). 

• Contouring or strip-cropping is added to all other fields with slopes greater than 2 percent 
that do not already have those practices.

• Fields adjacent to water receive a riparian buffer.

• Fields not adjacent to water receive a filter strip.

• No changes are made to tillage.
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The model simulations provide estimates without any of the uncertainty characteristics of nonpoint-
source pollution that are associated with variability in weather and practice performance. Since we 
are using the model results to compare policy instruments for reducing agricultural nonpoint-source 
pollution, this shortcoming is not seen as a major issue and policy rankings should not be affected. 
Uncertainty would be important if we were trying to determine the level of management necessary 
to meet a water quality standard with a degree of certainty or to compare the cost-effectiveness 
of abatement from sources with very different uncertainty characteristics. We assume that poli-
cymakers are concerned only with long-term average outcomes. In our modeling, we assume that 
farms do not enter or exit the sector in response to the introduction of TMDL-related policies. We 
also do not consider taking cropland out of production (shifting to pasture or forest) as an option 
for reducing pollution losses, other than converting cropland to filter strips as part of water erosion 
controls. The CEAP data do not include this practice. We also assume that policies implemented 
in the Bay watershed do not influence market prices, so there would be no incentive for farms not 
affected by an abatement policy to alter their production (no “leakage”).

Table 2

Crop acres under different conservation management systems in the baseline

Management system Acres Percent

None 2,408,685 57.5

Nutrient management (NM) 521,018 12.4

Cover crops (CC) 119,260 2.8

Water erosion control (EC) 855,582 20.4

NM-CC 11,019 0.3

NM-EC 225,792 5.4

CC-EC 18,972 0.4

NM-CC-EC 28,583 0.7

Source: USDA, Natural Resources Conservation Service, 2011.

2011 CEAP Update

NRCS conducted a new CEAP survey in 2011 to evaluate progress made by Bay farmers 
between 2006 and 2011 (USDA, NRCS, 2013). The new survey captured changes made by 
farmers through the various Federal and State programs providing technical and financial 
assistance, as well as changes farmers made on their own. The survey found increased use of 
some conservation measures, particularly cover crops and erosion controls, in the watershed. 
The survey also found little change in the use of nutrient management practices. The 2011 data 
were not publicly available as of the publication date (or “in time” for our analysis). Had we 
based our analysis on the 2011 data, our estimates of total costs would probably be lower, but 
our conclusions about the relative cost-effectiveness of the different policy approaches should 
not have changed.
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Cost of Best Management Systems

We assume that farmer management choices are the result of profit maximizing behavior. The 
cost to a farmer of implementing a new conservation practice is the expected reduction in net farm 
returns. These include annualized capital costs (equipment and structures), changes in annual 
input costs (labor, fuel, chemicals, seed), and changes to gross revenue due to changes in crop 
yields (including land taken out of production). Capital and annual costs were obtained from 
several sources, including State Watershed Implementation Plans and contract data from USDA’s 
Environmental Quality Incentives Program. Changes in crop yields for the different management 
scenarios were obtained directly from the CEAP modeling. Policy transaction costs (administration, 
monitoring, verification, and enforcement) are not included in the analysis. We also could not include 
manure hauling costs incurred by confined animal feeding operations with inadequate cropland for 
agronomic application of the manure nutrients. 

We first examine whether the management baseline represented by the CEAP survey data was 
economically “optimal.” If we assume that farmers have perfect information and seek to maximize 
expected profits, we expect that observed practices are those that maximize net returns. However, 
we found that a small portion of our sample could increase net returns by adopting some of the 
improved management systems, implying that farmers are not maximizing net returns, a result found 
by others using profit-maximizing models that assume perfect information (Diaz-Zorita et al., 2004; 
Pendell et al., 2006; Veith et al., 2004). In an analysis such as ours, this could lead to a policy inter-
vention having a negative cost.  

Two factors may be at work here. First, the actual cost of adopting practices for each observation 
is unknown; only regional averages are available. Second, a variety of factors that operators treat 
as costs may not be captured by a simple accounting of implementation costs and revenues. These 
include increased uncertainty about expected returns (risk), loss aversion (decisions are influenced 
more by a potential loss than an equal-sized potential gain), and behavioral inertia (Gillenwater, 
2012). Consider the split application of nutrients, which is a practice for improving nutrient use effi-
ciency. If the field is too wet when the second application needs to be applied, then yields will suffer. 
A farmer may be reluctant to adopt this practice even though, on average, it offers an increase in net 
returns. 

The data did not allow us to explore the cost and risk characteristics of each observation. Instead, 
we estimated what the implicit cost of the enhanced management systems would have to be for the 
observed management practice to be the profit-maximizing choice. For each modeled scenario, we 
determined the largest increase in net returns from among all the observations. We then added this 
value as an implicit cost to adopting the conservation measures to each observation. For example, if 
we require each sample farm not currently using nutrient management to adopt the practice, and a 
single farm shows a profit by doing so, we would add that profit as an implicit “cost of risk” to each 
sample farm in the database. This ensures that the baseline scenario represents those practices that 
give farmers in the watershed maximum net returns in the absence of any policy, while preserving 
the rankings of observations in terms of management system implementation costs. Changes in 
management would therefore only be in response to the incentives offered by the policy, and not 
to any other economic factor. While this approach cannot be used to estimate the “true” cost of a 
policy, we believe it can be used to compare policies. We refer to this addition to cost as the “risk” 
component throughout the rest of the report.
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Performance-Based Instruments

Performance-based policies use measures of pollutant delivered to receiving waters as the basis 
for policy. We evaluated performance-based scenarios using economic models developed to esti-
mate the least-cost distribution of best management system (BMS) adoption across the watershed 
for achieving the pollution abatement goals (see Appendix 1 – Modeling Scenarios for Improving 
Cropland Nutrient Management). 

Bay-Level Constraint (Optimal)

This scenario represents the least-cost distribution of BMSs for achieving the nitrogen, phosphorus, 
and sediment abatement goals of the TMDL at the tidal waters of the Bay, given the baseline prac-
tices as the starting point. The optimization model selects the mix of conservation systems across 
the watershed from among those included in the CEAP data to achieve the TMDL at least cost. With 
complete information about pollutant delivery to tidal waters from each field and practice costs, 
a regulatory agency could establish a delivered pollutant limit for each field. Farmers would then 
determine which practices would meet the limit at least cost to them. This “optimal” scenario repre-
sents the most efficient allocation of abatement across the watershed and is useful as a comparison 
for the other policy instruments in terms of cost and the regional distribution of abatement. 

Hydrologic Unit Code (HUC)-Level Constraint

Issues such as “fair share” and the simplification of policies may lead decisionmakers to limit their 
policy choice set to a manageable number of alternatives and ad hoc decision rules (Schwartz, 2010). 
Fair share implies a distribution of abatement across political jurisdictions such that one jurisdic-
tion is not perceived as bearing the brunt of the costs, which is important in a watershed such as 
the Chesapeake Bay. This scenario assumes that political realities require all political jurisdic-
tions (for simplicity, defined here as a 4-digit HUC, fig. 1) to have identical abatement goals, in 
terms of percentage reductions in nitrogen, phosphorus, and sediment. We model this scenario by 
constraining each of the four HUCs to achieve the same percentage reductions in delivered nitrogen, 
phosphorus, and sediment, while meeting the overall TMDL abatement goal for the tidal waters. 

Field-Level Constraint

This scenario is the least-cost combination of BMSs necessary for each field to reduce delivered 
nitrogen, phosphorus, and sediment by the TMDL reduction goals. Farmers choose how to meet the 
requirements. This scenario treats all fields equally, regardless of location in the watershed, current 
emissions, or baseline management. Treating all fields the same may be seen as more “fair” than a 
policy that targets only a subset of fields, as resource managers may reject sharp differences in the 
allocation of abatement across comparable nonpoint sources (Schwartz, 2010).

HUC- and field-level requirements may be less efficient than Bay-level constraints in achieving 
TMDL goals at the tidal waters, but they may enable more widespread water quality improvements 
in local rivers and streams. The water quality benefits to local users may engender more political 
support from regions that do not benefit directly from improved water quality in the Bay. We do not 
assess location-specific economic benefits in this analysis.
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Design-Based Instruments

Performance-based policies are difficult to implement for nonpoint-source pollution because 
pollutant discharge cannot easily be measured and regulators lack the information necessary to set 
optimal performance goals. An alternative is to focus on inputs and management practices (design-
based approaches), which are more easily observed by both resource management agencies and 
farmers. Practices can be required through regulation or encouraged through financial incentives. 
An important difference in the evaluation of these scenarios is that they are not constrained to meet 
the TMDL goals. 

An essential design feature of these policies is identifying which fields are subject to regulation or 
incentives (the “Who” question). If pollution control programs could target priority fields (based on 
geography or field characteristics) and the farmers of those fields adopt the most efficient pollutant-
reducing practices, then the total costs of abatement would be minimized (performance-based prac-
tices do this automatically through their incentive structure). The key is to find targeting criteria that 
are the best predictors of both water quality and low unit abatement costs, but are also easy to imple-
ment (low administrative costs). We selected targeting criteria from among the variables included in 
the NRCS CEAP data set that we believe could be used in such a policy.

Scenarios are evaluated based on the likely attainment of basinwide TMDL goals, total costs to agri-
culture, and unit abatement costs (a measure of efficiency). The costs of the design-based scenarios 
are estimated by selecting the observations/fields meeting the targeting conditions (described in the 
scenarios below), adding required management practices to the baseline practices, then adding up 
the total BMS implementation costs. Exceeding TMDL goals is not rewarded; as long as the goals 
are met, the lowest cost policy is the one preferred. 

Figure 1

Chesapeake Bay Watershed and major sub-basins (HUC-4)

Source: USDA, Economic Research Service.
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16 
An Economic Assessment of Policy Options To Reduce Agricultural Pollutants in the Chesapeake Bay, ERR-166 

Economic Research Service/USDA

Who bears the cost of design-based instruments depends on whether practices are required 
through regulation (farmers and consumers bear the cost) or whether financial incentives are used 
to compensate farmers for lost profits (taxpayers bear the cost). We assume that a farmer will be 
willing to adopt a practice if total implementation costs are covered, so that the costs of regulation 
and financial incentives would be the same. 

Mandatory Best Management Systems (BMS) on All Acres (E3)

This scenario simply requires all crop acres to implement the full suite of best management systems 
for improving water quality:  nutrient management (NM), water erosion controls (EC), and cover 
crops (CC) (Everyone does Everything Everywhere, or E3). This approach does not require resource 
management agencies to determine baseline pollutant losses or rank the effectiveness of practices 
across cropping systems and resource characteristics, as targeting is not a part of this policy. The 
expectation is that this approach would be the most inefficient (Wainger, 2012).

At Least One BMS on All Acres

This scaled-down approach (relative to the E3 scenario) requires that all cropland acres be covered 
by at least one best management system—nutrient management, water erosion controls, or cover 
crops. Only fields that have not implemented any of these systems have to adopt one, at the discre-
tion of the farmer. We assume farmers adopt the least-cost system. This scenario recognizes good 
stewards who have already adopted water quality-protecting systems and focuses on those producers 
slow to adopt them. The scenario also demonstrates how farmers might respond to a voluntary 
program that fully offsets adoption costs of management systems selected by farmers (otherwise 
farmers have little incentive to adopt the systems). Most conservation programs provide only partial 
cost-share assistance (EQIP cost shares are generally around 50 percent). However, some programs, 
such as Maryland’s Cover Crop program, offer 100-percent cost shares.

BMSs Targeted to Vulnerable Fields

This scenario uses information on the inherent vulnerability of fields to runoff or leaching in order 
to target the policy. Vulnerability factors for surface runoff include soil properties such as hydro-
logic group, slope, and erodibility (USDA, NRCS, 2011). Factors for loss of nutrients to subsurface 
flow include soil hydrologic group, slope, erodibility, and coarse fragment content of the soil. About 
23 percent of cropped acres in the Chesapeake Bay watershed have high runoff potential, and 42 
percent have moderate runoff potential (USDA, NRCS, 2011). About 17 percent of cropped acres 
have high leaching potential and 46 percent have moderate leaching potential. Vulnerable acres are 
not distributed evenly across the watershed. About 60 percent (53 percent) of acres that are highly 
or moderately vulnerable for runoff (leaching) is located in the Susquehanna basin (table 3). In 
this scenario, if only leaching vulnerability is high, then nutrient management and cover crops are 
required. If only runoff vulnerability is high, then cover crops and erosion control are required. If 
both leaching and vulnerability are high, then all three management systems are required. 

BMSs Targeted to Fields Needing Treatment

Targeting on inherently vulnerable cropland ignores the fact that the land may have adequate treat-
ment to address pollutant loss. This scenario uses vulnerability factors and baseline management 
practices to identify those fields that are inadequately treated, as defined by NRCS (USDA, NRCS, 
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2011). NRCS estimates that 19 percent of cropped acres had a high level of need for additional 
conservation measures in 2006, and 61 percent had a moderate need (80 percent undertreated in 
total). Almost 70 percent of acres with the highest treatment needs are in the Susquehanna basin 
(table 3). This basin contains 56 percent of the CBW acres receiving manure and about 67 percent 
of the acres classified as highly vulnerable to runoff, and as a result, contributes a disproportionate 
share of pollutants. In this scenario, only fields defined as needing treatment receive additional 
water quality BMSs. Based on NRCS ratings, nutrient management (NM) and cover crops (CC) are 
required if there is a need to reduce nitrogen leaching or runoff. NM and erosion controls (EC) are 
required if there is a need to reduce phosphorus runoff. EC and CC are required if there is a need to 
reduce sediment loss. If two or more pollutant problems need addressing, then nutrient management, 
erosion controls, and cover crops are required. We allow the model to select the least-cost system 
rather than prescribe it. This represents how farmers might respond to a voluntary, targeted program 
that compensates them for adopting a management system.

BMSs Targeted to Fields Adjacent to Water

Fields adjacent to water contribute more pollutants than upland fields farther away, all else equal 
(Baker et al., 2007; Kling, 2011). About 22 percent of cropland in the Chesapeake Bay water-
shed is identified as being adjacent to water (table 3). About 35 percent of this land is in the 
Susquehanna watershed and 29 percent in the Upper Chesapeake watershed. We explore different 

Table 3 

Crop acres, vulnerable acres, and acres in need of treatment, by sub-basin (HUC-4)

Cropland category
HUC 205

Susquehanna

HUC 206
Upper  

Chesapeake
HUC 207
Potomac

HUC 208
Lower  

Chesapeake Total

All cropland 1,734,800 1,187,900 684,000 673,200 4,279,900

Vulnerability

High runoff potential 654,792 65,358 188,640 70,535 979,325

Moderate runoff potential 998,411 229,610 397,988 165,456 1,791,465

High leaching potential 322,417 195,497 93,583 105,938 717,435

Moderately high leaching 
potential 1,097,013 421,369 295,657 152,562 1,966,601

Treatment need

Critical under-treated 
acres

558,625 92,499 120,517 38,356 809,997

All under-treated acres 1,464,251 862,878 590,263 490,533 3,407,924

Enhanced targeting factors

Adjacent to water 323,992 275,733 190,378 145,746 935,849

Highly Erodible Land 
(HEL) 1,099,996 236,129 388,458 153,532 1,878,115

Cropland receiving manure 913,625 401,765 293,993 7,805 1,617,188

HUC = Hydrologic Unit Code designation for a watershed 

Source:  USDA, Natural Resources Conservation Service, 2011.
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combinations of nutrient management, erosion controls, and cover crops to determine which 
would achieve TMDL goals at the lowest cost. We also allow targeted farmers to select the least-
cost management system themselves. 

BMSs Targeted to Fields with Highly Erodible Land

Highly erodible land (HEL) is subject to high runoff levels, which carry with it sediment and nutrients. 
Cropland is routinely assessed for erosion since HEL cropland is subject to USDA compliance provi-
sions. About 44 percent of cropland in the Bay watershed was identified as HEL in 2006 (table 3). 
About 60 percent of this HEL was in the Susquehanna watershed. We explore different combinations 
of management practices to find which could meet the TMDL goals at least cost when targeted to HEL 
cropland. We also allow targeted farmers to select the least-cost management system.

BMSs Targeted to Fields Receiving Manure

Cropland receiving manure has consistently been found to receive excess amounts of nutrients 
(Ribaudo et al., 2003; Ribaudo et al., 2011). Part of this is due to the need to dispose of manure 
on operations that have large numbers of animals. Manure is also more expensive to apply in 
a conserving manner than commercial fertilizer. About 38 percent of cropland in the water-
shed received manure in 2006 (table 3). About 56 percent of land receiving manure was in the 
Susquehanna watershed. We explore different combinations of management practices to find which 
could meet the TMDL goals at least cost when targeted to cropland receiving manure. We also 
allowed targeted farmers to select the least-cost management system.

Results

Table 4 describes each policy scenario for achieving pollution abatement in the Chesapeake Bay 
watershed:  whether there is a pollutant reduction constraint, whether farmers are “told” what to 
implement and what those requirements are, and whether the policy is targeted to certain kinds of 
fields. The scenarios were evaluated with an optimization model described in Appendix I. 

The Bay-level policy scenario, which minimizes the cost of simultaneously meeting the nitrogen, 
phosphorus, and sediment reduction goals at the tidal waters of the Bay, was the optimal solution, 
contingent on resource managers having perfect information on costs and the delivery of pollut-
ants from each field. The cost of meeting TMDL abatement goals was estimated to be about $54.8 
million per year (table 5). This cost estimate includes our measure uncertainty about expected 
returns (risk), loss aversion, and behavioral inertia which are unobserved but reflect real costs to the 
farmer and thus influence their practice adoption decisions. Unit abatement costs were $2.13 per 
delivered pound for nitrogen, $67.27 per delivered pound for phosphorus, and $647.33 per delivered 
ton for sediment. The pollutant reduction goals were met by adopting conservation systems on only 
505,000 acres (12 percent of cropland in the watershed) (table 6). Water erosion controls and nutrient 
management were applied to over 90 percent of the cropland receiving additional treatment. Cover 
crops were applied to less than half of cropland receiving treatment. Over 56 percent of the crop 
acres with improved management were located in the Susquehanna sub-basin (HUC 205), which is 
the largest source of pollutants to the Bay. Pollution can be reduced at a lower unit cost on average 
in this sub-basin than in the others. Only 1.7 percent of crop acres with improved management were 
located in the Lower Chesapeake (HUC 208). 
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Table 4

Summary of policy scenarios

Policy

Constrained to 
meet the N, P, 

and S reduction 
goals?

Farmers told  
what to imple-

ment? Targeted Practice requirement

Performance based

Bay level (optimal) Yes, at the Bay no no
None, farmer can choose least cost combination 
of practices to meet goal

HUC-4 level Yes, at the HUC no no
None, farmer can choose least cost combination 
of practices to meet goal

Field level Yes, at the field no no
None, farmer can choose least cost combination 
of practices to meet goal

Practice based

Every field has every 
practice (E3) no yes no Every farmer uses every practice

Every field has at least 
one practice no no no

Fields without any practices in the baseline adopt 
one practice

Vulnerability no yes yes
CC and NM if vulnerable to leaching
CC and EC if vulnerable to runoff

Treatment need no yes yes

NM and CC if need to reduce N leaching or runoff.
NM and EC if need to reduce P runoff.
EC and CC if need to reduce sediment loss.
NM, EC, and CC if two or more needs.

Treatment need: least 
cost practice no no yes

 
None, targeted farmers adopt least cost practice 
of their choice

Adjacent to water and 
treatment need no yes yes

EC and NM on cropland adjacent to water and 
with a moderate treatment need, AND on cropland 
with a high treatment need

Adjacent to water and 
treatment need:  least 
cost practice no no yes

None, targeted farmers adopt least cost practice 
of their choice

HEL no yes yes EC and NM on HEL cropland 

HEL:  least cost practice no no yes
None, targeted farmers adopt least cost practice 
of their choice

Manure and treatment 
need no yes yes

EC and NM on cropland receiving manure with a 
moderate treatment need, AND on cropland with a 
high treatment need

Manure and treatment 
need:  least cost practice no no yes

None, targeted farmers adopt least cost practice 
of their choice

CC = cover crop
NM = nutrient management
EC = water erosion control
HEL=Highly Erodible Land
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One way that this optimal abatement could be achieved would be for the regulatory agency to assign 
a delivered discharge limit for each field. A discharge limit allows each farm to meet the standard at 
least cost, but allocative efficiency requires that each field have a unique limit that accounts for prac-
tice costs. Such an approach would be very costly to implement, even if the data were available. 

An alternative is to implement a tax on pollutants discharged to the tidal waters. The estimated 
taxes on delivered pollutants to simultaneously achieve the necessary reductions are $2.36 per pound 
N, $39.98 per pound P, and $200.08 per ton sediment.4 We assume that any tax revenue would be 
rebated back to farmers through a system of awards for adopting conservation systems. To illustrate 

4Tax rates are the shadow prices for the constraints on nitrogen, phosphorus, and sediment in the optimization model. 
In simple terms, it is the benefit of relaxing the constraint by one unit.

Table 5

Cost, pollutant reduction, and unit cost of policy instruments by scenario

Policy
Cost
($)

Nitrogen  
reduction 

(%)

Phosphorus 
reduction 

(%)

Sediment 
reduction 

(%)
Unit cost  
N ($/lb.)

Unit cost  
P ($/lb.)

Unit cost 
Sediment  

($/ton)

Performance-based

Bay level (optimal) 54,775,571 25 24 20 2.13 67.27 647.33

HUC-4 level 80,388,269 25 24 21 3.12 97.18 901.01

Field level 801,783,748 58 58 72 13.43 408.83 2,636.96

Design-based

Every practice on all 
fields (E3) 1,264,018,051 75 74 85 16.39 501.13 3,497.87

Every field has at least 
one practice 399,922,550 24* 30 36 16.41 397.00 2,623.07

Vulnerability 420,960,863 28 30 34 14.69 419.16 2,953.07

Treatment need 949,140,202 64 63 63 14.40 447.01 3,562.09

Treatment need: least 
cost practice 531,305,469 28 40 54 18.21 393.70 2,324.78

Enhanced targeting

Adjacent to water and 
treatment need: EC and 
NM 337,299,175 30 31 25 10.95 318.72 3,252.61

Adjacent to water and 
treatment need: least 
cost practice 210,604,209 17* 21* 23 11.64 295.56 2,144.47

HEL: EC and NM 479,113,517 34 39 39 13.53 361.37 2,873.07

HEL: least cost practice 290,933,506 21* 26 37 13.32 328.62 1,863.52

Manure and treatment 
need: EC and NM 445,610,300 40 32 26 10.91 407.52 4,082.59

Manure and treatment 
need: least cost practice 263,715,463 20* 28 25 12.27 284.62 2,473.32

*Scenario did not meet Total Maximum Daily Load goals.
CC = cover crop.
NM = nutrient management.
EC = water erosion control.
HEL = Highly Erodible Land.

Source:  USDA, ERS analysis of Natural Resources Conservation Service Conservation Effects Assessment Project data.
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Table 6 

Practice adoption by scenario

Policy
No 

change CC
NM_EC_

CC EC_CC NM_EC EC NM_CC NM
Total 

changed

Acres

Performance-based

Bay level 
(optimal) 3,683,919 37,689 51,323 121,418 204,522 41,150 31,025 17,862 504,990

HUC-4 level 3,573,546 26,109 112,144 136,948 175,972 112,911 26,672 24,606 615,363

Field level 7,729 652,297 304,466 2,098,949 403,884 585,273 111,704 24,606 4,181,180

Design-based

E3 28,583 225,792 2,408,685 521,018 119,260 11,019 855,582 18,972 4,160,326

Every field 
has at least 
one practice 1,780,224 692,917 0 487,062 21,204 1,156,057 8,976 42,468 2,408,685

Vulnerability 2,641,684 172,186 102,196 746,630 0 36,183 475,229 14,802 1,547,225

Treatment 
need 1,039,332 42,004 954,194 112,905 370,050 11,500 1,452,615 206,310 3,149,577

Treatment 
need: least 
cost  
practice 865,509 766,387 0 754,333 21,204 1,730,031 8,976 42,468 3,323,400

Enhanced targeting

Adjacent to 
water and 
treatment 
need: EC 
and NM 2,829,993 0 0 0 1,001,205 42,054 0 315,658 1,358,917

Adjacent to 
water and 
treatment 
need: least 
cost  
practice 2,825,204 445,609 0 220,608 21,204 649,446 8,976 17,862 1,363,705

HEL:EC  
and NM 2,433,306 0 0 0 1,167,012 182,713 0 405,878 1,755,603

HEL: least 
cost  
practice 2,359,348 701,622 0 206,253 21,204 850,588 25,598 54,297 1,829,561

Manure  
and treat-
ment need: 
EC and NM 2,495,461 0 0 0 1,285,489 73,197 0 334,762 1,693,448

Manure 
and treat-
ment need: 
least cost  
practice 2,482,736 535,361 0 356,397 21,204 766,374 8,976 17,862 1,706,173

CC = cover crop.
NM = nutrient management.
EC = water erosion control.
HEL = Highly Erodible Land.

Source:  Analysis of USDA, Natural Resources Conservation Service Conservation Effects Assessment Project data.
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the incentive provided by an emissions tax, we look at farms that had none of the best manage-
ment systems in place prior to the TMDL. The annual tax burden on these farms would be about 
$130 million. By adopting all three management systems, their tax burden would be reduced by 
$102 million. As long as the implementation cost of a management system is less than the proposed 
pollutant tax, the farmer would implement the system.

The optimal solution concentrated pollutant reductions and associated costs in the Susquehanna 
watershed. This might seem unfair, particularly since the Susquehanna watershed does not border 
the Bay and residents would not directly benefit from the Bay’s improvement. A more “equitable” 
requirement could be that each basin reduces delivered nitrogen, phosphorus, and sediment by the 
same percentages. However, shifting delivered abatement to parts of the watershed characterized 
by higher unit costs increases the overall costs of meeting the TMDL by almost 47 percent (HUC-4 
level in table 5). Unit abatement costs increase to $3.12 per pound for nitrogen, $97.18 per pound for 
phosphorus, and $901.01 per ton for sediment. About 22 percent more crop acreage is treated than 
under the Optimal scenario. The share of treated acres coming from the Susquehanna sub-basin 

Table 7 

Distribution of treated acres by sub-basin (4-digit Hydrologic Unit Code (HUC))

Policy

HUC 205
Susque-
hanna

HUC 206
Upper 

Chesapeake
HUC 207
Potomac

HUC 208
Lower 

Chesapeake

Percent of cropland

Performance-based

Bay level (optimal) 56.6 21.7 20.0 1.7

HUC-4 level 45.3 22.8 12.4 19.5

Field level 40.4 27.3 16.3 16.0

Design-based

E3 42.3 25.7 15.3 16.7

Every field has at least one practice 42.9 24.6 16.7 15.9

Vulnerability 56.9 15.2 16.5 11.4

Treatment need 43.6 24.1 17.2 15.2

Treatment need: least cost practice 42.7 24.8 17.7 14.8

Enhanced targeting

Adjacent to water and treatment need: EC 
and NM 54.2 16.4 19.4 10.0

Adjacent to water and treatment need: least 
cost practice 54.3 16.3 19.4 10.0

HEL:EC and NM 58.9 11.1 21.5 8.4

HEL: least cost practice 58.3 12.2 21.1 8.4

Manure and treatment need: EC and NM 57.1 21.2 19.2 2.6

Manure and treatment need: least cost 
practice 57.1 21.0 19.3 2.6

CC = cover crop.
NM = nutrient management.
EC = water erosion control.
HEL = Highly Erodible Land.

Source:  Analysis of USDA, Natural Resources Conservation Service Conservation Effects Assessment Project data.
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decreases to 45 percent, while the share coming from the Lower Chesapeake increases from 1.7 
percent to 19.5 percent (table 7). 

Requiring that the watershed pollutant abatement goals be met at the field level proved far more 
costly (table 5). Total control costs were more than 14 times greater than for the Optimal scenario. 
Additional conservation practices were adopted on nearly all cropland (table 6). As a result, water-
shed-level abatement goals were significantly exceeded (58-percent reduction for N and P, and 
72-percent reduction for sediment). This is partly due to the “all or nothing” nature of the conser-
vation systems in our analysis; the conservation systems could not be fine-tuned to deliver specific 
abatement levels. The distribution of cropland acres receiving additional treatment closely matches 
that of the distribution of cropland in the watershed, rather than aligning with the sources of pollut-
ants delivered to the Bay. 

Design-Based Policies

Requiring that all crop acres be treated with the full suite of management practices (E3) is a 
simple approach to implement. It is also the most expensive (23 times more expensive than the 
Optimal scenario), as it makes no attempt to make use of information on vulnerability to pollutant 
loss or current levels of management (table 5). Not surprisingly, the pollution abatement goals are 
exceeded by wide margins:  75-percent reduction for N, 74 percent for P, and 85 percent for sedi-
ment. These results indicate that ample opportunities exist to reduce costs through targeting.

Requiring that all crop acres be treated with at least one water quality BMS is a lower cost alter-
native to the E3 approach. It is seven times more expensive than the Optimal scenario but about 
30 percent of the cost of the E3 scenario, as only those fields not under any BMS would be treated 
(table 5). A drawback of this approach is that the abatement goal for nitrogen is not met. Farmers 
choose practices that are most beneficial (less costly) to them and not necessarily consistent with 
watershed goals.

A more efficient approach may be to target on factors believed to be closely related to pollution 
creation and delivery (Ribaudo et al., 1999). Requiring selected management systems on cropland 
that NRCS has identified as vulnerable to pollutant losses more than meets the TMDL abatement 
goals (N reduced 28 percent, P reduced 30 percent, and sediment reduced 34 percent) (table 3-4). 
About 1.6 million acres of cropland receive additional conservation practices in this scenario (table 
3-5). Total costs are reduced by almost 67 percent compared to the E3 scenario. However, costs are 
still almost eight times greater than for the Optimal (performance-based, Bay-level) scenario. The 
distribution of crop acres receiving additional treatment is reasonably close to that of the Optimal 
scenario, although the Lower Chesapeake sees a significantly higher percentage of cropland treated 
(11.4 percent) than in the Optimal scenario (1.7 percent) (table 7). 

Targeting only vulnerable acres requires some land that has adequate treatment in the baseline to 
produce additional abatement. Additional abatement can only be achieved at a high cost, reducing 
the overall efficiency of the policy. Costs are likely to be reduced by targeting on NRCS-defined 
treatment needs, which takes into account both vulnerability and baseline practices. Targeting 
only cropland with a high treatment need (not shown) did not meet TMDL abatement goals for any 
of the pollutants. Expanding coverage to include cropland with high or moderate treatment needs 
greatly exceeded the abatement goals:  64-percent reduction for N, 63 percent for P, and 63 percent 
for sediment (table 5). Over 3 million acres of cropland undergo improved management, about 86 
percent more cropland than under the vulnerability scenario (table 6). This increase in treated acres 
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is the reason why total costs are much higher than targeting based on vulnerability. Unit reduction 
costs, which are a measure of cost-effectiveness, are not definitively better than those under the 
Vulnerability scenario (better for N, worse for P and sediment). But the fact that overall pollutant 
reductions were more than doubled without a large increase in average unit abatement cost indicates 
there are some efficiency gains by targeting on treatment need. 

Requiring cropland identified as having moderate to high treatment needs to adopt at least one 
additional water quality BMS of the farmer’s choice offers a lower cost alternative to prescribing 
specific practices for the targeted acres. Abatement goals are met and total control costs decline 
by 44 percent compared to the Treatment Need scenario. Unit abatement costs are higher for N but 
lower for P and sediment. However, targeting on Vulnerability still meets the overall abatement 
goal at a lower cost. The Vulnerability scenario better matches the distribution of abatement across 
HUCs of the Optimal scenario than does the Treatment Need scenario, meaning that conservation 
measures are more likely to be cost-effective at reducing pollution (table 7).   

Including additional information in the targeting criteria could further improve the efficiency of 
targeted policies. Targeting only cropland adjacent to a stream did not meet the unit abatement 
goals, even when all three management systems were required (not shown). Additional targeting 
criteria are needed to reach enough cropland to achieve the watershed abatement goals. A policy 
that requires nutrient management and soil and water controls on cropland that is adjacent to a 
stream AND has at least a moderate treatment need, or has a high treatment need anywhere in 
the watershed, was found to exceed the abatement goals at a cost that is much lower than targeting 
based only on treatment needs or even vulnerability. Nitrogen, phosphorus, and sediment reduc-
tions are 30, 31, and 25 percent, respectively. About 1.36 million acres (32 percent of cropland in the 
watershed) are targeted, which is less than half the acres treated under the simple Treatment Need 
scenario. Unit abatement costs for N and P are significantly lower than under any of the design-based 
scenarios (table 5). The distribution of cropland receiving additional treatment is very close to that of 
the Optimal scenario, which contributes to higher cost-effectiveness (table 7). Trying to improve the 
efficiency of this targeting approach by letting farmers with cropland meeting the targeting criteria 
select a BMS does not meet the abatement goals for N and P (table 5). 

Targeting highly erodible land (HEL) or land receiving manure could also meet the TMDL goals 
at a lower cost than targeting only on treatment needs, but at higher costs than for targeting land 
adjacent to water. Allowing farmers to select a practice did not meet the abatement goal for nitrogen 
in either of these scenarios. 

Summary 

TMDL goals could be met by installing management systems on a relatively small share (about 
12 percent) of cropland in the Chesapeake Bay watershed, based on our data and assumptions that 
regulators have the information necessary to set the appropriate performance standards or emission 
taxes. This finding (Optimal scenario) demonstrates the unequal contribution of nonpoint-source 
pollutants across fields.

Focusing on a small percentage of cropland could raise concerns about fairness and hinder 
agreement on a common policy across political jurisdictions. However, increasing the amount of 
cropland required to adopt key management systems reduces overall efficiency. Such a tradeoff 
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between equity and efficiency may be necessary to achieve political support for policies that meet 
TMDL requirements.

If the information required to implement such a performance-based policy is either not available 
or too costly to collect, practice-based regulations or incentives can be used. The results of the 
Optimal scenario demonstrate the cost implications of being able to target abatement to those areas 
that can provide the most cost-effective control. The most cost-effective design-based policy among 
our scenarios is to target cropland that has moderate treatment needs and is adjacent to water plus 
cropland with high treatment needs anywhere in the watershed. In general, using additional informa-
tion (like proximity to water) in an enhanced targeting scheme achieved lower unit abatement costs 
than any of the other design-based scenarios that focused only on vulnerability or treatment needs. 
One reason is that the distribution of targeted cropland across HUCs is similar to the distribution 
of treated acres in the Optimal scenario (table 3-6). There may be additional targeting criteria that 
could lower the overall costs of policies based on highly erodible land (HEL) or use of manure. The 
least efficient policy (E3) was to require that all cropland use the full suite of conservation systems.

The benefit of performance-based policies are also apparent in the per-acre costs of implementing 
required management systems. Since performance-based policies select those fields that can produce 
the most abatement at least cost, fewer management systems need to be adopted. The average per-
acre treatment cost for cropland receiving treatment in the Optimal scenario is $108. For the design-
based scenarios, average per-acre treatment costs range from $160 to $304. Because cropland could 
not be targeted to the same land in the Optimal scenario through relatively simple targeting criteria, 
more treatment systems were needed per acre in order to meet the abatement goals. 

Requiring the use of improved management systems through regulation has a level of certainty 
in practice adoption that cannot be attained through purely voluntary approaches. If farmers are 
willing to adopt practices for a payment that just covered adoption costs (including reduced yields), 
the costs of regulation and financial incentives would be similar. However, if farmers are reluctant to 
change practices, incentive offers may have to be much higher than implementation costs to induce 
voluntary change. If so, the voluntary approach may end up costing much more than a regulation to 
achieve TMDL goals, assuming widespread compliance and low enforcement costs. 

When farmers were allowed to select the management systems to adopt, with or without compen-
sation, they tended not to adopt systems that would achieve all three water quality goals. Cover 
crops and water erosion controls tended to be preferred over nutrient management. Farmer reluc-
tance to voluntarily adopt nutrient management has been noted in other studies (Genskow, 2012; 
Osmond et al., 2012). TMDL goals were achieved when allowing farmers to choose which prac-
tice to implement only when all cropland with moderate and high treatment needs was targeted. 
This is due to the large amount of cropland covered, reflected in the relatively high total cost 
($531 million) of this strategy. 

If required management practices increase operating costs to the point where a profit cannot be 
made, then a farm would likely go out of business and the land would be incorporated into a more 
efficient farm or shift to some other use. We did not evaluate the potential for the TMDL to affect 
land use, primarily because of the limited management system changes we included in our analysis, 
and our inability to accurately estimate farm-level financial impacts, including risk. In reality, 
farmers have many more management choices available to them than we modeled in this analysis, 
such as conservation tillage and new crop rotations, which would likely lower the overall economic 
impacts of the TMDL. 
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Water Quality Trading Baselines and the Costs of Meeting 
TMDL Goals

The previous section demonstrated the benefits of a performance-based approach that provides 
incentives for farmers of fields that can provide the most abatement at least cost to adopt appropriate 
management systems. One such policy is point/nonpoint water quality trading. State Watershed 
Implementation Plans for meeting the Bay TMDL all include the development of point/nonpoint 
water quality trading programs. TMDL wasteload allocations for point sources such as Publicly 
Owned Treatment Works (POTWs) may require costly upgrades to meet their new emission limits. 
To help reduce the costs of meeting these limits, the U.S. EPA is encouraging the development of 
water quality trading programs that allow regulated sources such as POTWs to meet their permit 
requirements by purchasing offsets or credits from unregulated nonpoint sources such as agriculture. 
In 2006, U.S. EPA and USDA signed a Water Quality Credit Trading Agreement stating that point-
nonpoint trading will complement existing subsidies for water quality improvement from agriculture 
(U.S. Department of Agriculture, 2006).

How Trading Works

Water quality trading is a type of emissions trading. Trading can in theory allow firms with different 
pollution abatement costs to allocate pollution abatement among themselves in the most efficient 
way. In a cap-and-trade program, trading is organized around the creation of a good called an emis-
sion allowance, which allows the holder to discharge one unit of pollutant. Regulated dischargers—
point sources that discharge directly to water through a pipe or other conveyance—can legally 
discharge only as much as their holding of allowances. Emissions in excess of the allowances 
result in a fine or other penalties. The total number of emission allowances allocated to regulated 
dischargers in a watershed is set by the State regulatory agency, based on the proportional contribu-
tion of the regulated pollutant to the total emissions limit for a watershed (a Total Maximum Daily 
Load, or TMDL, is often the basis for a water quality trading program). Emission allowances are 
initially allocated to firms by the regulatory agency, usually in proportion to current emissions. 

Assuming that the number of allowances granted to a firm is less than its baseline emissions, all 
firms face a choice. Firms with discharge levels greater than their initial holdings of allowances will 
have to either purchase more allowances or reduce emissions. Firms with marginal costs of pollution 
control greater than the price of an allowance will purchase allowances in the market. Firms with 
marginal control costs less than the price of an allowance will reduce emissions and sell their excess 
allowances in the market. In equilibrium, the water quality goal is met (total emissions are no more 
than the number of emission allowances in the market), those firms that can reduce emissions at the 
lowest cost provide most of the pollution control, and marginal control costs for all emissions are 
equal (thereby meeting the efficiency goal). 

The promise of emissions trading, along with the real-world success of air emissions trading, has 
led U.S. EPA to encourage States to consider agriculture as a source of offsets in water quality 
trading programs, and a number of States are either implementing or considering water quality 
trading programs that allow point/nonpoint source trading. Allowing agriculture to supply credits 
in a market created by capping emissions from regulated point sources would (1) reduce the cost of 
meeting water quality goals by allocating abatement more efficiently among sources (the economic 
rationale for trading); and (2) provide a strong economic incentive for unregulated nonpoint sources 
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to play a larger role in improving water quality (U.S. EPA, 2008). This is an important goal for 
water quality trading in the Chesapeake Bay watershed. 

Regulators designing point/nonpoint trading markets must contend with uncertainty about sources 
and levels of emissions, the effectiveness of best management practices, the water quality impacts 
of emissions from different sources, and farmer willingness to participate in a market driven by 
regulation (on point sources) (Hoag and Hughes-Popp, 1997; King, 2005; King and Kuch, 2003; 
Woodward and Kaiser, 2002; Ribaudo and Gottlieb, 2011; Horan and Shortle, 2011; Shortle 2013). 
The failure of current trading programs to perform as hoped can largely be attributed to failures 
of market design and program rules to adequately address these issues, and to the high transaction 
costs due to the necessity of incorporating uncertainties into market design. 

The Role of Trading Baselines

In a point/nonpoint trading program, pollutant reductions that would have occurred as a result of 
technology upgrades by regulated point sources are replaced by equivalent, long-term reductions 
from unregulated nonpoint sources that would not have occurred in the absence of the trading 
market. In order for water quality to be protected, the nonpoint-source reduction in pollutants must 
be identical in quality to the forgone point-source reduction and must not have occurred without the 
incentive provided by the market (the credit is “additional”). This is the role of the baseline. A base-
line is a prediction of the amount of pollutant emissions from an activity resulting from the expected 
future behavior of actors absent any policy intervention (trading program), holding all other factors 
constant (Marshall and Weinberg, 2012; U.S. EPA, 2007). Fields not meeting the baseline criteria 
cannot produce credits for sale in a market until the baseline criteria are achieved. If a full credit is 
issued for an activity that would have occurred anyway, then it is non-additional and total pollutant 
loadings will be greater than if the credit had been additional (Marshall and Weinberg, 2012). 

In the Chesapeake Bay watershed, Pennsylvania, Maryland, and Virginia have all established base-
lines that do not reflect current practices, but that require a certain level of stewardship be attained 
before credits can be sold. These are consistent with U.S. EPA guidance on baselines. U.S. EPA’s 
trading policy states that where a TMDL is in place, the Load Allocation or other appropriate base-
line should serve as the threshold for nonpoint sources to generate credits (U.S. EPA, 2007). In a 
sense, the baseline becomes a representation of the TMDL Load Allocation implemented at the 
field scale, akin to the Waste Load Allocation for point sources being incorporated into the indi-
vidual NPDES permits. Establishing a stewardship-based baseline essentially requires a farm to 
contribute to the TMDL’s Load Allocation before being able to sell credits. The ability to sell credits 
is expected to be a sufficient incentive for farmers to provide this extra abatement. Farmers already 
meeting the baseline, who could be considered good stewards for previously adopting conservation 
practices, would be able to enter the trading program without first contributing to Load Allocation. 
Farmers who are not using best management systems (from a resource conservation standpoint) 
would likely have to adopt some conservation measures to meet baseline requirements. The more 
stringent the baseline (i.e., the smaller the pollutant losses allowed), the greater the percentage of 
cropland needing improved management before being able to produce and sell credits. 

However, setting a baseline that is more stringent than current practices could come at a cost to point 
sources trying to reduce their own permit compliance costs. Such a baseline could significantly 
restrict credit supply by discouraging producers who can supply credits at a relatively low cost but 
are not meeting the baseline from voluntarily entering a market. A farmer would only be willing to 
create and sell credits if the expected credit price is high enough to generate the revenue necessary 
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to cover the cost of meeting the baseline plus the cost of any measures taken to produce additional 
abatement. If the price is sufficient for the farmer to enter the market, the amount of abatement equal 
to baseline is credited toward Load Allocation, while the remainder goes to the market. In aggre-
gate, the sector’s credit supply curve shifts to the left, reflecting the higher cost of supplying credits. 
Higher credit costs will reduce the amount of credits purchased by point sources. The amount of the 
shift depends on the share of cropland not currently meeting baseline requirements and the amount 
of abatement farmers must achieve before being eligible to trade. In aggregate, the shift in the sector 
supply curve increases the market price of credits, reducing the number of nonpoint-source credits 
purchased by point sources.

There are also consequences from the standpoint of reducing nonpoint-source pollution. If meeting 
an eligibility baseline discourages those farms that can provide the most abatement at the least cost 
from participating in a trading program, the overall efficiency of the policy for meeting TMDL goals 
could be reduced. As demonstrated earlier, traditional design-based policies that might be used to 
achieve a stewardship baseline consistent with the TMDL are much less efficient than performance-
based policies, such as trading. 

Stephenson et al. (2010) found that when the eligibility baseline is more stringent than current prac-
tices, agricultural credit costs for nitrogen can surpass marginal abatement costs for point sources 
because the baseline has claimed the lowest-cost pollutant reductions. Ghosh et al. (2011) found that 
Pennsylvania’s baseline requirements significantly increased the cost of entering a trading program, 
making it unlikely that nonpoint sources that could reduce nutrient losses for the lowest unit costs 
would enter the market. Wisconsin has expressed concern that U.S. EPA’s approach to defining 
baselines could obstruct agricultural sources’ participation in trading programs and possibly impede 
water quality improvements (Kramer, 2003). The concern is that fewer nonpoint-source credits 
would be purchased by point sources, and that total abatement costs for regulated sources would be 
higher than they would be otherwise. None of these studies examined the effect of baseline choice 
on total nonpoint-source abatement.

We examine this tradeoff  between baseline stringency and willingness to trade with the CEAP data 
from the Chesapeake Bay watershed. We assume that agriculture is not required to meet baseline 
requirements unless entering into a trading program. We assume that point sources are allowed 
to seek credits from agricultural sources (consistent with the trading policies of Chesapeake Bay 
States). Agricultural sources are allowed to sell credits to point sources once a baseline requirement 
is met. Credits are generated only by the adoption of additional management, even if a field meets 
the baseline before entering the trading program (no non-additional credits in the market). We select 
a baseline rule that is based on nitrogen loading rates rather than specific practices, as it is easier to 
evaluate environmental stringency. This approach is consistent with the baseline rules proposed for 
Maryland’s water quality trading program. We look at loading rate thresholds of 15, 25, 35, 45, and 
65 pounds of nitrogen per acre of cropland, along with a baseline based on current practices. We also 
assume that trading is allowed across sub-basins within the Bay watershed, which is not currently 
allowed. In our analysis, we examine the relationship between baseline stringency, market equilib-
rium price, abatement going to the credit market, and abatement going to TMDL Load Allocation.

Demand for Credits in the Chesapeake Bay Watershed

We assume for this analysis that demand for credits from agriculture will come from publicly 
owned sewage treatment works (POTW). A demand curve for credits is estimated with data from 
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176 significant wastewater treatment plants in the watershed to represent demand from POTWs 
(personal communication with John Talberth, Water Resources Institute). Demand is predicated 
on avoiding costs of treatment upgrades that would be required to meet emission permits under 
the TMDL. Sources of cost data include Maryland Department of the Environment, Pennsylvania 
General Assembly Legislative Budget and Finance Joint Committee, and Virginia Department of 
Environmental Quality. 

Treatment costs include capital and operating costs for achieving nitrogen reductions consistent with 
a Waste Load Allocation for the TMDL. Reductions were calculated as a function of existing flows 
(3-year average) and both pre- and post-upgrade concentrations. For each plant, costs of reducing 
nitrogen were modeled on a per-pound basis. After all relevant data for each plant were compiled, a 
demand curve for credits was plotted (fig. 2). We assume that a credit consists of 1 pound of nitrogen 
reduction delivered to the tidal waters of the Bay. 

Estimating the Supply of Credits

With the data on practice cost, yield, edge-of-field nitrogen loss, and nitrogen delivery to the tidal 
waters of the bay, we estimate the least-cost option for each observation to supply credits for a 
trading market, subject to meeting the eligibility baseline. Each observation (considered a repre-
sentative farm) could add new management systems (nutrient management, cover crops, or water 
erosion control) to its “current” set of practices, except for those observations/sites already imple-
menting the full suite of management systems. We use the performance-based models described 
earlier to find the least-cost management choice for each observation. Costs reflect the total costs to 
the farmer of adopting the practice set (including practice implementation costs), the opportunity 

Figure 2

Nitrogen credit supply and demand curves under alternative loading-rate baselines

Source: USDA, Economic Research Service analysis of Natural Resources Conservation Service Conservation 
Effects Assessment Project data.
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costs of changes in nutrient applications and crop yields, and costs associated with increased risk 
(ignoring any cost-share payments from conservation programs). 

If the observation meets the eligibility baseline, all new abatement goes to the credit market. If the 
eligibility baseline is not met, abatement is allocated between meeting the baseline (going to the 
TMDL’s Load Allocation) and supplying the credit market. Adopting a single management system 
often produces enough abatement to meet the baseline and to supply the credit market. The credit 
price at which it would be profitable for a field to supply credits in the market reflects the cost of 
achieving the baseline. Aggregating credit supply across all observations for a particular base-
line results in a sector credit supply curve for that scenario (fig. 2). We calculate nonpoint-source 
nitrogen credit supply curves for a “current practices” baseline, and baselines of 65, 45, 35, 25, and 
15 pounds of nitrogen loss per acre of cropland. Only about 26 percent of watershed cropland could 
meet the most stringent baseline before adopting additional practices (table 8). About 85 percent 
could meet the least stringent baseline. 

Results

The “current practices” baseline provides the most credits at lowest cost, as all fields are eligible 
to supply credits with the implementation of a practice. In this scenario, 31.65 million pounds of 
nitrogen are sold to POTWs at an equilibrium price of $3.13/lb. (table 9). Point sources realize a 
benefit of $251 million from being able to purchase nonpoint-source credits rather than installing 
enhanced treatment technology. All abatement goes to the market and none to Load Allocation. 
Since all farms can immediately enter the market, most of the credits are coming from fields with 
high nitrogen losses and without best management systems. Installing practices on such fields 
produces high amounts of nitrogen reduction for a low unit cost. Fields already under conservation 
measures cannot provide as much additional abatement and the abatement provided is more costly. 

When an N loss eligibility baseline is used to provide more abatement for Load Allocation, supply 
curves shift to the left, as expected, since some fields cannot sell credits until the baseline is met. 
Since abatement required to meet the baseline cannot be sold, fewer credits are supplied. The cost 
of credits supplied reflects the cost of meeting the baseline, plus the cost of any additional measures 
taken to reduce N losses. The more stringent the baseline, the fewer the available credits (and the 
further left the supply curve shifts). Under the most stringent baseline (15 lbs. N loss/acre), the equi-
librium price in the market would be $16.49 per lb./N, and only 3.29 million credits would be traded 
(table 9). The benefit to point sources is only $67 million, a decrease of 73 percent from the “current 
practices” baseline. Some fields not meeting baseline requirements would still find it profitable to 
meet baseline requirements and sell credits in the market. As such, 3.54 million pounds of N abate-
ment would go toward Load Allocation.

Table 8

Bay Watershed cropland acres meeting edge-of-field loading limits

Edge of field nitrogen loss (pounds/acre) Percent of watershed cropland

15 26.5

25 50.8

35 65.4

45 74.2

65 85.3

Source: USDA, ERS analysis of Natural Resources Conservation Service Conservation Effects Assessment Project data.
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The amount of abatement going to Load Allocation increases as the eligibility baseline is relaxed 
(table 9). At the least stringent baseline we examined (65 lbs. N/acre), more nonpoint-source abate-
ment (46.6 million lbs. N) is produced at the equilibrium price than under the “current practices” 
baseline (31.65 million). The reason is that market prices are high enough to induce fields that do not 
quite meet baseline requirements, but can produce high levels of abatement at low cost, to adopt the 
necessary practices. 

Changing the baseline alters the amount of abatement. If a goal of the program is to maximize 
total nonpoint-source abatement, then a carefully chosen eligibility baseline could accomplish this. 
However, the equilibrium credit price in the point/nonpoint trading market is still higher than under 
the “current practices” baseline and the economic benefits to regulated point sources are reduced. 

If a baseline reduces the supply of credits in the market, the government could try to compensate by 
offering to subsidize practices necessary to meet the baseline. A State may feel that the benefits of 
trading, in terms of reducing point-source costs and mitigating nonpoint-source pollution, are worth 
the taxpayer expense of the subsidies. This is currently an accepted use of conservation program 
funds (American Farmland Trust, 2013). 

We examined this policy by calculating nonpoint-source nitrogen credit supply curves when the 
costs of meeting the baseline are not paid by the farmer. For simplicity, we assume a 100-percent 
cost-share. We also assume that abatement generated by the subsidized practices is not eligible 
for sale as credits, even if the baseline is exceeded (consistent with rules against so-called double 
dipping, or receiving multiple payments for the same action). All abatement from subsidized prac-

Table 9

Comparison of trading market equilibrium conditions under alternative baselines, with 
and without practice subsidies

Baseline
Equilibrium price  

($/lb. N)
Equilibrium quantity  

(1 million lbs. N)

Abatement towards 
ag nonpoint  

load allocation  
(1 million lbs. N)

Total ag nonpoint 
abatement  

(1 million lbs. N)

Current practices 3.13 31.65 0 31.65

15*, no subsidy 16.49 3.29 3.54 6.83

25*, no subsidy 10.28 6.25 7.49 13.74

35*, no subsidy 8.26 11.62 12.59 24.21

45*, no subsidy 7.23 14.72 18.13 32.85

65*, no subsidy 5.41 20.19 26.42 46.61

15*, subsidized 13.93 4.51 19.84 24.45

25*, subsidized 10.65 6.07 32.18 38.25

35*, subsidized 9.18 8.84 33.08 41.92

45*, subsidized 9.09 9.12 33.94 43.06

65*, subsidized 8.09 12.13 38.54 50.67

*Pounds of nitrogen lost per acre of cropland. 
Source: USDA, ERS analysis of Natural Resources Conservation Service Conservation Effects Assessment Project 
data.
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tices goes to the nonpoint-source Load Allocation of the TMDL. Credits would be produced for 
practices adopted once the baseline is met.

For all but the most stringent baseline (15 lbs. N/acre), the provision of a subsidy actually reduces 
the number of credits going to the market (table 9, fig. 3). The reason for this counterintuitive result 
is that abatement generated by a practice cost-shared by the government cannot be sold as credits 
in the market, even if the eligibility baseline is exceeded. As a result, some of the credits that were 
available to the market when the subsidy was not offered instead go to Load Allocation; the supply 
curve for that stringency level shifts to the left with the subsidy. Point sources do not benefit from 
the subsidy, but total nonpoint-source abatement is higher with the subsidy for all baselines. If the 
subsidy is less than 100 percent (as are cost-shares in most conservation programs), the incentive 
would be reduced and less nonpoint-source abatement would be generated    

These results are driven in part by the “lumpiness” of our management options and the limited 
number of management options considered. Adopting a practice may produce a large amount of 
abatement that cannot be “fine-tuned” to exactly match demand. With more management choices, a 
farmer would have greater control over how much abatement can be provided and the impact of the 
subsidy on credit supply would probably be reduced; more abatement would go to the market and 
less to Load Allocation. A baseline based on management practices rather than nitrogen loadings 
would not face this issue.

Figure 3

Nitrogen credit supply and demand curves in the presence of program subsidies under 
different loading-rate baselines

Source: USDA, Economic Research Service analysis of Natural Resources Conservation Service Conservation 
Effects Assessment Project data.
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Discussion

The stewardship-based eligibility baselines for point/nonpoint trading could restrict the number 
of credits that would be supplied in a trading program. Existing baseline rules are intended to 
encourage achievement of the TMDL Load Allocation for agriculture. However, the rules may 
unnecessarily constrain markets, increasing credit prices and reducing potential efficiency gains. 

Stringent nitrogen loading baselines did not provide much “extra” abatement for Load Allocation, 
while they significantly reduce the volume of credits traded. Relaxing the baseline increased abate-
ment for both the market (benefiting point sources) and for Load Allocation. Offering a subsidy 
to cover the cost of meeting the baseline significantly increased total abatement. In our analysis, 
much of this increase went to Load Allocation. With more choices of conservation practices than 
we considered and different rules for how credits are awarded, a subsidy could provide more credits 
for the market. Our findings emphasize the importance of carefully evaluating these factors when 
designing a trading program. 

This analysis does not consider market design features such as trading ratios and geographic limits 
on markets that would further restrict trading and increase credit prices. Given that impediments to 
trading are many (Ribaudo and Gottlieb, 2011; King and Kuch, 2003; Woodward and Kaiser, 2002; 
Shortle, 2013) and the stated need to reduce the costs facing regulated point sources for meeting the 
TMDL, baseline choice has a major influence on whether point sources can reduce these costs. 

The worst nonpoint polluters tend to have the largest range of abatement possibilities, so the most 
effective abatement program of any kind (trading or otherwise) incentivizes these farms to partici-
pate. Setting stringent eligibility baselines tends to reduce participation in trading by this group, 
because of the high cost of meeting baseline requirements. Without a regulatory means of forcing 
nonpoint-source producers to adopt management practices consistent with the Load Allocation of the 
TMDL, the consequences of choosing an eligibility baseline are magnified.
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Manure Management and the TMDL

Animal agriculture is a significant part of the agricultural economy in the Chesapeake Bay water-
shed. Of the 83,800 farms in the watershed in 2007, animal farms with predominantly confined 
animals accounted for about 13,800 operations (16 percent), with a combined average daily inven-
tory of roughly 2.0 billion pounds of poultry, dairy, swine, and feedlot beef. Animal agriculture is 
also a significant source of nutrient loadings to the Bay. Animal operations produce roughly 99,400 
tons of recoverable manure nitrogen and 44,200 tons of recoverable manure phosphorus annu-
ally (USDA, NRCS, 2012), most of which is applied to available cropland on the source operation. 
However, confined animal feeding operations often produce more manure nutrients than can be used 
by crops grown on the land managed by the operation (Ribaudo et al., 2003; Gollehon et al., 2001). 
This has led to problematic storage of surplus manure and overapplication of manure nutrients, with 
resulting nutrient losses to the environment (Ribaudo et al., 2003; Aillery et al., 2005). An estimated 
17 percent of the nitrogen entering the Bay and 26 percent of the phosphorus has been attributed to 
animal operations (NRC, 2011). 

Confined animal feeding operations are regulated to control for water-quality impacts under the 
Clean Water Act. The largest animal feeding operations (Concentrated Animal Feeding Operations 
or CAFOs) require NPDES permits if discharge from the housing facilities enters surface waters 
through a pipe or ditch. In addition, all CAFOs are expected to have a nutrient management plan 
that balances the application of manure nutrients to cropland controlled by the operation with the 
agronomic needs of receiving crops. Most of the Bay States have requirements on the storage and 
application of manure nutrients that cover all sizes of operations, not just the largest. Maryland and 
Delaware also pay animal operations to haul manure out of their States. 

Despite existing Federal and State programs intended to encourage sound manure management, data 
from the 2007 Census of Agriculture indicate a significant imbalance between manure nutrients 
produced in the watershed and the nutrient uptake potential of the crops receiving manure. Even if 
confined animal operations in the CBW fully utilized the crop and pasture land under their control 
for manure application, only about 47 percent of the manure nitrogen produced could be assimilated 
onfarm.5 Clearly, responsible nutrient management requires moving significant quantities of manure 
off animal operations for abatement practices to be effective. State Watershed Implementation Plans 
acknowledge this continued imbalance by setting reduction goals for nutrient emissions from manure 
applications. The TMDL creates the impetus to make the fullest use possible of these requirements. 

Our earlier analysis of improved management on crop acres covered all cropland, including that 
owned or leased by animal operations. However, the CEAP data did not allow us to single out 
this cropland. Because animal operations have a continuing, self-supplied source of crop nutrients 
(animal waste) that cannot be easily “turned off,” the management problems they face are different 
than those of crop producers who purchase all their nutrients. The cost of moving excess manure 
nutrients to additional cropland where it can be applied efficiently, or to other uses, adds to the 
overall cost of improving nutrient management on animal operations (Ribaudo et al., 2003). To 
examine these costs, we apply a different data set and model.

5While we do not have current estimates of AFO assimilative capacity for phosphorus, previous studies suggest that 
the percent of manure P that could be assimilated onfarm is considerably lower than that for manure N (Ribaudo et al., 
2003).
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Much of the watershed’s excess manure is concentrated in major poultry-producing areas of southern 
Maryland and Delaware, as well as northwest Virginia and eastern West Virginia. Concentrated 
dairy production across south-central Pennsylvania adds to the manure excess (fig. 4). Balancing 
nutrient supply and demand within the watershed will require moving manure from areas of surplus 
to areas where it can be used without posing a risk to water quality. Cropland receiving commer-
cial fertilizer can use manure nutrients to meet all or some of the crops’ nutrient needs, but moving 
manure from animal operations requires cropland managers willing to use it following good nutrient 
management practices. Alternative uses for manure, such as energy and commercial fertilizer 
production, could also absorb some of the regional excess. Manure (nutrients) may also be trans-
ported out of the watershed entirely. All of these options require hauling manure from farms with 
excess, which can be costly (Ribaudo et al., 2003).

The costs associated with managing surplus manure nutrients depend not only on individual farm 
conditions but also on the interaction among animal operations, and their proximity to available 
land for manure spreading. Our analysis uses the Chesapeake Bay Regional Manure Transport 
Model, which accounts for the competition for available cropland land among animal producers in 
the Chesapeake Bay Watershed (see Aillery et al., 2005, for a complete description of the model). 
We assume that all animal feeding operations (AFOs) are moving toward meeting the nutrient 
management goals laid out in the State Watershed Implementation Plans. The model and its results 
reflect a regional planning perspective emphasizing the cost determinants and feasibility of different 
manure management strategies at the watershed scale. 

Source: USDA, Economic Research Service analysis of 2007 Census of Agriculture data.
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Total recoverable manure (dry tons) per acre of spreadable land (all cropland plus half 
of permanent pasture) in the Chesapeake Bay watershed, by county, 2007
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Modeling Manure Management in the Chesapeake Bay 
Watershed

In areas of the Chesapeake Bay watershed where confined animal production is concentrated, imple-
mentation of manure management policies poses tremendous challenges. If the manure produced 
exceeds potential local use, producers may choose to (1) transport the manure ever greater distances 
until enough land can be found for application or (2) pursue technologies that either utilize manure 
as a production input or transform the manure to a value-added product that is more readily trans-
portable and usable. Changes in feed management, such as adding phytase to enhance phosphorus 
utilization for non-ruminants (poultry, hogs), can help reduce nutrients excreted in manure to some 
extent.6 Manure amendments, such as alum in poultry litter, have also been used to lessen phos-
phorus runoff from field-applied manure.7 Beyond this, the only recourse is to reduce the number 
of animals in the watershed. Florida, for example, reduced its dairy numbers via a Dairy Buyout 
Program to reduce nutrient runoff from dairy farms in the Lake Okeechobee watershed to protect 
the Everglades (Schmitz et al., 1995). 

The Chesapeake Bay Regional Manure Transport Model helps us account for landowner willing-
ness to apply manure and non-cropland manure uses. Our model is designed to minimize the total 
regional costs of manure management, transport, and application for use on agricultural lands in 
the CBW, given the existing scale and structure of the animal industry and manure storage/hauling 
technologies currently in use. The regional specification captures the element of competition by 
modeling access to available farmland, simulating within-county and out-of-county manure flows 
based on manure nutrient content and assimilative capacity of receiving farmland, and computing 
the associated hauling and application costs. Explicit modeling of competition for land on which to 
spread manure differentiates the model from existing farm-level models.

The model was developed to (1) provide a mechanism to track manure and related nutrient flows 
within the CBW, from confined animal farms to offsite application and use; (2) compute the regional 
costs of applying manure to land, given manure transfers dictated by nutrient flows and manure 
hauling weight; and (3) provide a framework for evaluating proposed land-application regulations 
and alternative nutrient management policies. The model was first used to evaluate the impacts 
of new Clean Water Act regulations on CAFOs (Ribaudo et al., 2003). For this analysis, several 
changes were made to accommodate more recent data from the 2007 Census of Agriculture and a 
revised methodology for estimating hauling distance (see Appendix, “Updates to the Chesapeake 
Bay Regional Manure Transport Model”).

The county is the primary modeling unit. The county-level specification provides consistency with 
census of agriculture data and other data sources and permits differentiation of institutions and 
regulatory conditions across county and State political boundaries within the watershed. County and 
other data are used to capture heterogeneity in production, technology use, and land resource avail-
ability across the region, though our model may not represent the conditions on any particular farm. 

6Phytase is a supplemental enzyme added to feedgrain regimes for poultry and hogs to reduce the phosphorus content 
of manure. Under a P-based nutrient standard, lower manure-phosphorus concentrations allow higher rates of applied 
manure to cropland. Phytase use has expanded in the Chesapeake Bay watershed in recent years. Analysis of phytase 
treatment for manure management was examined in prior ERS research (Ribaudo et al., 2003). 

7Alum is a chemical added to poultry litter primarily to reduce ammonia emissions from poultry houses. It also 
reduces P runoff from fields receiving litter. Analysis of alum treatment for manure management was examined in prior 
ERS research (Aillery et al., 2005).
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Model output reported at the 6-digit Hydrologic Unit Codes (HUC) is used to highlight variation in 
production conditions and policy response at a sub-basin scale. 

Study Scenarios

The cost of achieving TMDL pollutant abatement goals for animal agriculture will depend on 
various factors that influence the production and disposition of excess manure-nutrients in the CBW. 
Using the Chesapeake Bay Regional Manure Transport Model, we first simulate onfarm AFO 
manure excess and off-farm manure use on non-AFO crop farms under conditions reflected in the 
2007 Census of Agriculture. The Base Case approximates the “current” costs of manure handling 
based on reported off-farm manure use in 2007, given that accurate estimates of the share of applied 
manure meeting nutrient standards are unavailable. We then evaluate four policy scenarios: (1) 
compliance with a nutrient management plan across differing levels of willingness of non-AFO crop 
farms to accept manure; (2) compliance with a more restrictive requirement for nutrient manage-
ment; (3) the presence of manure demand for non-cropland uses (energy generation), and (4) reduc-
tions in the scale of the confined animal sector (see table 10 for scenario labels). 

Base Case 

The Base2007 simulation was constructed to approximate the disposition of manure and manure 
handling costs under current (2007) conditions, providing a context for examining changes in 
manure handling under alternative NMP compliance assumptions. The base case fixes onfarm 
manure use (AFOs) and off-farm manure use (non-AFO crop farms) to reported levels of acreage 

Table 10

Study simulations

Base case—2007 BASE

Nutrient Management Plan compliance 
scenarios

Willingness to accept manure

30% WTAM30

50% WTAM50

70% WTAM70

90% WTAM90

Full conservation treatment HICON50

Manure for biomass energy

5% M excess BIOMS05

10% M excess BIOMS10

15% M excess BIOMS15

20% M excess BIOMS20

Animal-unit reductions

2% AUs AURED02

4% AUs AURED04

6% AUs AURED06
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receiving manure in the 2007 Census.8 Onfarm manure excess was calculated from estimated 
recoverable manure nutrients produced on AFOs and crop-nutrient uptake on AFO cropland and 
pastureland in 2007, assuming an N standard for land application of manure  and adjustments in 
manure-ready acreage due to P-limited soils (Kellogg et al, forthcoming). In the base case, we 
assume that all manure hauled off the farm is applied at agronomic rates under an N application-to-
uptake ratio of 1.4 (N efficiency of 0.71), reflecting historically acceptable manure N losses (USDA, 
NRCS, 2011). Onfarm manure accounts for all remaining manure—including excess that is not 
applied to land off the farm and not otherwise removed for non-cropland uses. 

Under the Base2007 simulation, onfarm manure applied on AFOs accounts for a significant share 
(69 percent) of total manure produced across Chesapeake Bay counties (fig. 5). Onfarm manure 
includes 3.5 million dry tons (56 percent of total) sufficient to meet the agronomic requirements of 
crops produced on AFO farms, plus an additional 0.8 million tons (13 percent) that is assumed to be 
overapplied on AFO farms. Such overapplications are consistent with previous research (Ribaudo et 
al., 2003; Gollehon et al., 2001), and align closely with NRCS simulation assumptions for onfarm 
AFO manure use in 2007 (Kellogg, et al., forthcoming).

Manure moved off the farm and applied to cropland accounts for 1.9 million tons, or 31 percent of total 
manure produced. Approximately 1.1 million tons of manure moved off-farm is applied within the 
source county, while 0.8 million tons are hauled to other counties within the watershed. A small share 
of manure is diverted to non-cropland uses—primarily for commercial fertilizer products and small-

8We assume AFOs are randomly distributed on crop and pasture land within the county and HUC-6 sub-basin areas in 
which they are assigned in the source database (USDA, NRCS, 2012).

Figure 5

Disposition of manure in the Chesapeake Bay watershed under current conditions and 
full NMP compliance, by share of non-AFO crop producers willing to accept manure

AFO = Animal feeding operation; NMP = Nutrient management plan; WTAM = Willingness to accept manure.
Source: USDA, Economic Research Service analysis of 2007 Census of Agriculture data.
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scale composting of manure sold for non-cropland uses within and outside the basin. We estimate this 
amount at roughly 1 percent of total manure production in the Chesapeake Basin counties.9

Manure hauling costs, which are expected to increase with full NMP implementation, are an impor-
tant concern for the animal industry (Ribaudo et al., 2003). Under the Base2007 simulation, annual 
manure hauling costs are estimated at $171 million across basin counties, with on-farm hauling 
costs of $116 million accounting for a significant share.10 Off-farm hauling costs of $55 million 
were divided between in-county ($34 million) and out-of-county ($22 million) hauls. Poultry litter 
accounts for a large share of long-haul manure transfers, with wetter slurry and lagoon waste more 
typical of dairy and hog operations tending to shorter within-county hauls. 

Manure was applied on approximately 1.6 million acres across the Chesapeake Bay watershed in 
2007, including 1.1 million acres on AFOs and 0.5 million acres on non-AFOs (altogether 36 percent 
of the 4.4 million cropland acres in the CBW) (USDA, NRCS, 2011). An estimated 12 percent of 
total farmland received manure in the watershed, with acreage shares varying considerably across 
sub-regions. County-level estimates of manure-nutrient assimilative capacity suggest considerable 
opportunity to reallocate surplus manure within the watershed.11

Nutrient Management Plan Compliance Scenarios

In the following scenario analyses, we assume that all AFOs and non-AFOs in the watershed apply 
manure under an approved nutrient management plan (NMP) that defines acceptable application 
rates, timing, and application methods (consistent with nutrient management described earlier and 
with rules developed by the Bay watershed States). (While all manure applied to cultivated cropland 
is assumed to be incorporated or injected, the full suite of conservation treatments may not neces-
sarily be in place to minimize nutrient losses from applied manure). As more AFOs comply with 
manure-nutrient standards under approved plans, manure applied onfarm is reduced and a greater 
share will have to be moved off the farm. Increased competition for land to spread manure will, in 
turn, increase the distance required to access suitable land. Higher manure hauling costs faced by 
animal producers is an important policy challenge in moving toward full NMP compliance. 

Willingness To Accept Manure (WTAM) 

The willingness of crop farms to accept manure will be a key determinant of future hauling costs. A 
reluctance to apply manure may reflect various concerns, including potential odor in nearby residen-
tial areas, manure storage requirements, variability in manure-nutrient content, potential dispersion 
of weed seeds and pathogens, and possible litigation from nearby nonfarm housing. Manure rota-
tional requirements on soils with high phosphorus content may also limit applied manure in some 
areas. The willingness of landowners to use manure affects manure handling costs through changes 
in both the extent of suitable land and the hauling distance required to access available acreage.

9Current non-cropland manure uses include approximately 30,000 tons used annually for poultry-litter pelletizing 
(Perdue Agri-Cycle) in southern Maryland and Delaware. In addition, we assume that small-scale composting accounts 
for 2 percent of dry poultry litter and 1 percent of other ‘semi-dry’ litter, applied to excess manure across the basin. No 
adjustment is made for methane digesters, as byproduct nutrients are typically returned to cropland. 

10Hauling costs were calculated based on an estimated per-ton and per-mile charge by manure type (lagoon, slurry, 
dry) and distance interval. Hauling costs are net of revenues received for purchased manure. 

11An updated NRCS-CEAP assessment based on 2011 farmer survey data suggests rapid expansion in land-applied 
manure in the Chesapeake Bay watershed, with nearly half (48 percent) of farmland acres in the basin receiving manure.
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Under our NMP compliance scenarios, we assume that all AFO farms are willing to use their own 
manure onfarm to meet crop nutrient requirements. For non-AFOs, we apply four WTAM levels 
to manure-ready acreage across the CBW—30, 50, 70, and 90 percent. The range of WTAM levels 
reflects the uncertainty surrounding landowner attitudes to manure, and the sensitivity of hauling 
costs to alternative WTAM specifications. While WTAM assumptions are applied uniformly across 
the watershed, we recognize that rates may vary across sub-basins. For example, landowner willing-
ness to use manure may be higher in animal-producing areas with an established tradition of manure 
use and more active local manure markets. 

Under the NMP-compliance scenarios, onfarm manure use accounts for about 56 percent of manure 
produced in the CBW counties—or that amount required to cover nitrogen requirements of crops 
produced on AFOs (assuming an N application-to-loss ratio of 1.4). The decline in onfarm manure 
use from Base2007 levels is mirrored in an expansion in off-farm manure transfers (fig. 5). With 
increasing willingness of non-AFO crop producers to apply manure, a greater share of manure trans-
fers are used within the source county, with lesser shares hauled to other counties both within and 
outside the basin.

As the region moves toward full NMP compliance, off-farm manure hauling and application costs 
are projected to expand relative to BASE2007 conditions (fig. 6). Increased costs reflect both 
expanded acreage receiving manure and increased hauling costs required to access additional 
acres. Off-farm hauling costs—estimated at $55 million basinwide under BASE2007—increases 
by a range of $15 to $27 million, depending on assumptions about crop producers’ acceptance 
of manure. Increasing the willingness to accept manure from 30 percent to 90 percent reduces 
hauling costs (basinwide) by about 15 percent. Off-farm land application (and incorporation) costs 

Figure 6

Off-farm manure hauling and application costs under current conditions and full NMP 
compliance, by share of non-AFO crop producers willing to accept manure

AFO = Animal feeding operation; NMP = Nutrient management plan; WTAM = Willingness to accept manure.
Source: USDA, Economic Research Service analysis of 2007 Census of Agriculture data.
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increase basinwide from $11 million to roughly $14 million, reflecting the expansion in manure 
spreading requirements. 

WTAM and Intra-Regional Considerations 

The effect of WTAM on off-farm hauling costs varies widely across the watershed, reflecting 
considerable heterogeneity in production and land resources. In general, average off-farm hauling 
distance declines as non-AFO willingness to accept manure increases (table 11). This is most 
marked in the Potomac and Upper Chesapeake sub-basins where poultry production is concen-
trated. In areas where animal production is less concentrated, as in the Upper and West Branch 
Susquehanna basins, increases in manure acceptance have a negligible impact on hauling distance 
in absolute terms. The sensitivity of hauling distance to WTAM is further influenced by cropland 
density (fig. 7). In the James and Lower Chesapeake sub-basins, for example, where animal concen-
trations are comparatively low, the relative sparseness of contiguous cropland results in longer 
average hauls for a given WTAM. In all cases, the impact of a shift in manure acceptance depends 
on current WTAM levels. Where manure acceptance is lower (e.g., 30 percent), increased rates 
would help relieve competition for manure-ready land; the effect is lessened when manure accep-
tance is initially higher.  

Average hauling cost per dry ton of manure has a somewhat inverse relationship with hauling 
distance (table 12). Using WTAM50 as a benchmark scenario,12 average hauling costs range from 
$40/ton to $52/ton across the Susquehanna sub-basins where dairy production (with relatively high-
moisture manure content) is predominant. In contrast, in the Upper Chesapeake and Potomac sub-
basins, where much of the (comparatively dry) poultry litter is produced, hauling costs range from 
$17/ton to $27/ton. Average hauling costs per dry ton are generally less sensitive to WTAM levels 
than average hauling distance, given that manure hauling costs are based on both a cost-per-ton and 
cost-per-unit-distance. 

12Here and in all subsequent analyses, scenario WTAM50 (assuming 50 percent of landowners are willing to accept 
manure) serves as a benchmark scenario for examination of alternative compliance scenarios.

Table 11 

Average off-farm hauling distance, by willingness-to-accept manure (WTAM)  
and sub-basin (HUC-6)

  WTAM30 WTAM50 WTAM70 WTAM90

Sub-basin  Miles 

HUC_20501        Upper Susquehanna 2.0 1.7 1.5 1.3

HUC_20502 West Branch Susquehanna 2.4 2.0 1.7 1.6

HUC_20503 Lower Susquehanna        13.2 4.4 4.0 3.1

HUC_20600 Upper Chesapeake         28.5 16.7 8.9 7.6

HUC_20700 Potomac  43.0 34.2 22.8 17.0

HUC_20801 Lower Chesapeake         25.4 18.2 14.2 11.7

HUC_20802 James 23.5 14.1 11.0 10.3

Source: USDA, Economic Research Service analysis of 2007 Census of Agriculture data.
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Under scenario WTAM50, several manure-nutrient surplus counties of the Upper Chesapeake, 
Potomac, and Lower Susquehanna basins show significant net reductions in manure (fig. 8), as 
manure exports to nutrient-deficit areas exceed county inflows. Net imports of manure are posi-
tive for portions of the south-central CBW (James and Lower Chesapeake sub-basins) and northern 
CBW (Upper and West Branch Susquehanna sub-basins). However, much of the onfarm manure 
excess produced in the CBW remains within the sub-basin of origin, with imports often concen-
trated in receiving counties adjacent to high-surplus counties. 

Full Conservation Treatment

While NMP compliance scenarios reflect generally high levels of manure management, further 
reductions in manure-nutrient losses may be achieved through the adoption of additional conserva-
tion treatments appropriate for a given field. Increasing nitrogen use efficiency from 0.71 to 0.83 
(N application-to-uptake ratio of 1.2 or less) may require reduced application rates, as well as such 
practices as cover crops, filter strips and riparian buffers that capture excess nutrients and reduce 
pollutant runoff. Somewhat less apparent are the implications of moving toward full conservation 
treatments on manure handling costs in the watershed. 

Figure 7

Cropland and pastureland area available for manure spreading, with Chesapeake Bay 
sub-basin (HUC6) delineations, 2007

Source: USDA, Economic Research Service analysis of 2007 Census of Agriculture data.
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Figure 9 shows manure hauling and application costs under two cases: NMP compliance, with 
and without full conservation treatments (HICON50 and WTAM50). Full conservation treatments 
increase application costs by $2 million (15 percent) due to expanded acreage receiving manure. 

Table 12 

Average off-farm hauling cost, by willingness-to-accept manure (WTAM)  
and sub-basin (HUC-6)

  WTAM30 WTAM50 WTAM70 WTAM90

Sub-basin  $/dry ton manure hauled

HUC_20501        Upper Susquehanna 52.0 52.0 51.9 52.7

HUC_20502 West Branch Susquehanna 44.7 44.4 44.4 45.0

HUC_20503 Lower Susquehanna        43.3 39.9 39.9 39.8

HUC_20600 Upper Chesapeake         19.8 16.7 14.3 12.9

HUC_20700 Potomac  30.3 27.3 24.7 22.1

HUC_20801 Lower Chesapeake         21.6 20.0 19.3 17.0

HUC_20802 James 28.4 25.5 25.0 23.2

Source:  USDA, Economic Research Service analysis of 2007 Census of Agriculture data.

NMP = Nutrient management plan.
Source: USDA, Economic Research Service analysis of 2007 Census of Agriculture data.
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Figure 8

Net manure exports (1,000 dry tons) by Chesapeake Bay Watershed county,
assuming full NMP compliance and 50 percent willingness to accept manure
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Hauling costs required to access additional acres are also increased by $2 million (2 percent).13  
Higher manure handling costs are likely shared by AFO and non-AFO crop farms, given the dual 
effect on manure hauling and land application costs. 

Manure Use for Biomass Energy

The use of manure as a biomass feedstock for electricity power has been promoted as an innovative 
means to address regional goals for management of excess manure and renewable energy generation 
(Ribaudo et al., 2003). While a number of concept proposals have been advanced in the Chesapeake 
Bay region, uncertainty in energy markets, air-quality concerns, ash disposal issues, and other local 
siting issues have generally limited their support. The impact of a large-scale biomass facility on local 
manure supplies has been a particular concern of the agricultural community (Pease et al., 2012). 

Here we evaluate the effect of manure use for energy generation on AFO off-farm hauling costs 
for land-applied manure, and potential implications for the crop sector. Against our benchmark 
WTAM50 scenario, we consider five levels of regional manure feedstock demand for power genera-
tion—50,000, 100,000, 150,000, 200,000, and 250,000 dry tons (out of 6.2 million dry tons of 
excess produced) – based on proposed energy projects. Manure feedstock is assumed to be drawn 
from poultry litter and other semi-dry manure sources (30 and 50 percent moisture content, respec-
tively). As we are not evaluating a specific sited facility, reductions for biomass feedstock are applied 
uniformly across all excess dry and semi-dry manure sources from across the watershed to give total 

13Conservation practices such as filter strips and riparian buffers may further reduce available acreage for manure 
spreading. However, the effect on manure hauling costs is likely to be very small on a watershed scale. 

Figure 9

Off-farm manure hauling and application costs in the Chesapeake Bay watershed under 
full NMP compliance and 50 percent willingness to accept manure, with and without 
full conservation treatments

NMP = Nutrient management plan; WTAM = Willingness to accept manure; HICON = Full conservation treatment 
assuming a willingness to accept manure of 50 percent.
Source: USDA, Economic Research Service analysis of 2007 Census of Agriculture data.
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dry-weight tonnage. Base assumptions for manure used in pelletization and small-scale composting 
are held constant.

Figure 10 shows the reduction in (1) off-farm hauling costs and (2) value of chemical fertilizer 
offsets under alternative levels of manure diversions for power generation. With reductions in 
manure excess to supply demand for biomass feedstock, the decline in off-farm hauling costs for 
land-applied manure range from $1.1 to $5.0 million basinwide. Reductions in hauling cost moderate 
with greater manure diversions, as the most costly hauls are retired first. To the extent that manure 
transport costs are borne by the animal operations, cost savings accrue largely to producers in the 
Potomac and Upper Chesapeake sub-basins where, not surprisingly, much of the interest in a facility 
siting has focused. 

With reduced manure excess, and resulting declines in acreage receiving manure, the value of 
forgone manure—based on the cost of equivalent levels of chemical N and P fertilizer—ranges from 
$1.7 to $8.4 million. The response function is nearly linear across manure diversions, as nutrient 
uptake rates averaged across affected acreage basinwide remain fairly constant (fig. 10). A tight-
ening of available manure supplies may result in additional costs for area crop producers who have 
come to rely on manure, to the extent that the full value of applied manure exceeds purchase costs. 
Under the BIOMS250 scenario, the 250,000 dry tons of manure diverted for energy generation 
results in 76,800 fewer non-AFO acres using manure across the basin (relative to the zero-biomass 
case). The forgone value of poultry litter as a manure source—based on equivalent levels of chem-
ical N and P—is estimated at $33/dry-ton.14  

14Based on the nutrient content of poultry litter, averaging roughly 44 lbs. N and 22 lbs. P per dry-ton, with a third of 
applied P valued under an N standard. The value rises to $41/dry-ton when manure P is fully valued. 

Figure 10

Effects on the value of fertilizer offsets and off-farm hauling costs of the use of manure 
as in input to biomass energy production in the Chesapeake Bay watershed, assuming 
full Nutrient Management Plan compliance and 50 percent willingness to accept manure 

Source: USDA, Economic Research Service analysis of 2007 Census of Agriculture data.
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According to Pease et al. (2012), brokers in the Shenandoah Valley pay as much as $12 to $15 per 
ton of poultry litter, or roughly $50 per dry-ton of manure when adjusted for moisture (30 percent) 
and bedding (10 percent, wet weight) content. Higher purchase prices may reflect, in part, the value 
of additional nutrients beyond N and P, as well as soil-enhancing benefits of organic material. While 
manure charges paid by crop producers are not well documented and returns to applied manure 
would vary across the basin, high litter prices and prospects of rising manure demand for biomass 
energy suggest at least the potential for higher costs to the regional crop sector. 

Scale Reductions in the Animal Sector

The challenge of managing manure nutrients in the Chesapeake Bay watershed is essentially one 
of nutrient flows and balance—large imports of animal-feed nutrients supporting an increasingly 
concentrated animal industry, and only a limited amount of available cropland to assimilate excess 
manure nutrients. Where excess nutrients cannot feasibly or economically be addressed through 
dietary regimes, improved management practices, increased landowner acceptance of manure, or 
expansion of non-cropland uses— all of which must be part of an integrated solution—reductions 
in the scale of animal production may be viewed as a reasonable approach. The Florida buyout of 
dairy operations in the northern Everglades basin suggests that voluntary, compensated reductions 
in animal herd size to improve water quality and environmental resources may represent a viable 
policy option. 

Here we consider the effect of reducing the scale of the animal sector in the Chesapeake Bay water-
shed on (1) off-farm manure hauling costs and (2) returns (above operating costs) to animal produc-
tion. Using WTAM50 scenario as a benchmark, we consider three levels of reductions in manure-N 
excess—5, 10, and 15 percent—roughly equivalent to reductions of 2, 4, and 6 percent of animal-
units15 basinwide. Excess manure is removed on a uniform percentage basis across all manure types 
in the watershed, and reductions in animal-units are assumed to be applicable only where AFO 
manure exceeds onfarm crop requirements. 

Figure 11 shows the effect of a reduction in animals on manure hauling costs and returns (above 
operating expenses16) to the animal industry. Basinwide, a 2-percent reduction in animal-units 
results in a loss of approximately $52 million to the animal sector, measured as weighted net returns 
across animal species types. Reducing nutrient excess by 15 percent would require roughly 6 percent 
fewer animal-units in the basin, valued at more than $150 million. The number and total value of 
animal-units forgone to meet manure-nutrient excess targets would vary over sub-basins, reflecting 
both the concentration of excess manure and the species composition of animals. 

The potential savings in off-farm hauling costs—ranging from $16 to $44 million depending on 
the level of nutrient excess targeted—are well below the forgone returns to animal production. 
Moreover, as forgone returns increase linearly with higher targeted levels of excess, the increase in 
sector savings decline as less costly hauls are eliminated. While operators facing exceptionally high 
manure hauling distances would have increased incentive to participate in a voluntary herd/flock 
reduction program, savings in manure hauling costs alone may not be a significant driver for many 
operators. 

15Animal-units, as defined for use in the NRCS manure-nutrient database, represent 1,000 pounds of live animal 
weight. An animal-unit serves as a common unit for aggregating over different types of livestock. 

16Net returns per animal-unit are based on the USDA-ERS REAP agricultural sector model.
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Conclusions

The animal sector faces increasing costs for off-farm manure hauling as it moves toward full NMP 
compliance for manure nutrients—both in terms of share of manure managed under approved plans 
and level of conservation treatments. The magnitude of these additional costs (about $18 million 
assuming nutrient management and 50 percent of farmers willing to accept manure; $22 million 
assuming full conservation treatment and the same WTAM) is much smaller than the costs esti-
mated for the design-based policy scenarios that require treatment on large shares of cropland ($337 
million to $1.2 billion). Increased hauling costs, while important to animal operations, appear to be 
a relatively small portion of the total costs to the agriculture sector of meeting TMDL goals.

Our analysis suggests these costs may be potentially mitigated through incentives to increase the 
willingness of landowners to accept manure. This might involve technical assistance for NMP 
development and cost-sharing for improved manure storage and handling technologies. The devel-
opment of local markets for manure transfers, already occurring in the CBW (Pease et al., 2012), 
may further promote application of manure on land. Targeting areas where competition for manure-
suitable land is greatest and landowner willingness to accept manure is relatively low may achieve 
the greatest benefits.

Costs may also be mitigated through point/nonpoint water quality trading, as for cropland. For 
those animal operations not covered by Federal or State nutrient management requirements, or 
those operations that have already met their nutrient management requirements, moving manure 
off the farm as part of a nutrient management plan and applying it to cropland elsewhere under 
an approved plan could be a way to create credits for sale in a market. However, confined animal 
operations are likely to be at a competitive disadvantage relative to crop producers, who do not incur 

Figure 11

Effects on off-farm hauling costs and forgone returns to the animal sector from reducing 
excess manure through a reduction in animal units in the Chesapeake Bay Watershed 

Source: USDA, Economic Research Service analysis of 2007 Census of Agriculture data.
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the manure hauling costs (Sneeringer, 2013). Any decrease in the application of manure nutrients on 
cropland controlled by an animal operation necessitates an increase in the amount of manure moved 
elsewhere. In contrast, reducing nutrient application rates on a crop farm to generate credits actually 
reduces fertilizer costs. 

Biomass energy generation has been suggested as a potential strategy for management of excess 
manure. If biomass facilities were to successfully address financial and environmental concerns 
raised with earlier proposals, increased demand for manure as a biomass feedstock could reduce 
manure hauling costs while increasing prices paid to animal producers. Siting of plant facilities 
would be important to maximize access to available manure supplies. However, manure diverted for 
energy expansion could impose costs on the regional crop sector if producers who had been using 
manure were required to rely more exclusively on commercial fertilizer.

Reducing the number of animals that contribute to manure-nutrient excess represents perhaps the 
most direct response to addressing concerns of excess manure. However, a voluntary animal buyout 
program is likely to be quite expensive and would be inconsistent with the watershed States’ stated 
goal of preserving agriculture in the watershed. Moreover, our simple analysis does not consider the 
broader costs of restructuring and potentially relocating animal production to other regions. But it 
does provide some insight on the magnitude of costs that may be involved in downscaling the animal 
sector to meet regional water-quality goals. 
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Policy Considerations for Meeting Nonpoint-Source 
Abatement Goals

The Chesapeake Bay TMDL was implemented largely in response to the failure of conventional 
policies to adequately address nonpoint-source pollution. The TMDL is forcing States to recon-
sider how to deal with agriculture and other nonpoint pollution sources. While there is currently 
a heavy reliance on traditional, voluntary approaches, a number of alternative policy instruments 
could be applied to promote improved nutrient management. In addition, a number of choices in 
how a particular policy, including traditional voluntary approaches, is designed could also improve 
cost-effectiveness. 

Goals Can Be Achieved by Addressing Relatively Little Crop 
Acreage

The Optimal scenario shows the least-cost allocation across sub-basins of the three conserva-
tion systems we allowed farms to adopt to achieve pollution abatement goals. Results indicate that 
the goals for agriculture can be achieved by implementing management systems on only about 12 
percent of cultivated cropland in the watershed, given baseline levels of practice implementation. 
Nutrient management and erosion control practices, either alone or in combination, are the predomi-
nant measures taken to meet program goals. The results also indicate that the Susquehanna basin is 
where most abatement would ideally come from. Baseline conditions indicate that this region is in 
the greatest need of improvement, so this finding is not unexpected. 

What kind of policy might achieve this outcome?  With perfect information, a resource management 
agency could set discharge limits for each field (performance-based). However, policymakers gener-
ally lack complete information on the cost faced by farmers for implementing new practices. With 
a tax on pollution emissions, policymakers need not know private landowners’ costs. We found that 
tax rates of $2.36 per pound of delivered N, $39.98 per pound of delivered P, and $200.08 per deliv-
ered ton of sediment would achieve the TMDL goals at least cost. However, such taxes have never 
been used in the United States. 

Another option would be to allocate pollution allowances equal to agriculture’s loading cap  
(Load Allocation) to fields and let farms trade allowances in a point-nonpoint trading program. 
Such a cap-and-trade program would achieve the optimal solution, assuming no market “friction,” 
but this would require that agriculture be regulated like point sources. Again, this is not a very 
likely scenario.

Focusing on Practices May Be More Practical

An alternative to performance-based approaches is to provide incentives for improved manage-
ment on the basis of field characteristics and implemented practices, as opposed to reductions in 
pollution achieved (design-based). Theory tells us that such policies are generally less efficient than 
performance-based policies when transaction costs are ignored, and that is what we found. Simply 
requiring all cropland to adopt the full suite of conservation measures considered will more than 
meet the TMDL goals, but at a very high cost (more than 23 times the Optimal scenario).
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Efficiency can be improved by targeting practices to cropland that has lower unit abatement costs. 
This can be accomplished by identifying observable factors or proxies that are closely related to 
pollutant creation and delivery. Nonpoint-source contribution in a watershed is not evenly distrib-
uted but tends to originate from a limited number of locations (Diebel et al., 2008), as indicated by 
the unequal geographic distribution of treatment under our Optimal scenario. We explored several 
potential proxies for pollutant delivery in order to target fields with higher pollution losses and lower 
unit abatement costs. As expected, focusing only on the characteristics of the land, such as erod-
ibility, and ignoring management measures was not cost-effective. Taking into account distance to 
water and an NRCS assessment of treatment needs provided the least cost design-based approach (of 
the options we evaluated) for meeting the TMDL. 

However, enhanced targeting did not approach the efficiency of the Optimal scenario. Our best 
enhanced targeting scenario was still about six times more costly than the Optimal scenario. The 
benefit of performance-based policies was demonstrated not only by the lower overall cost, but by 
the smaller average per-acre treatment costs ($108 per acre vs. $248 per acre). Since performance-
based policies induce those fields that can produce the most abatement at least cost to implement 
management, fewer management systems need to be adopted. Because the relatively simple targeting 
criteria of the design-based approaches could not target the same cropland receiving management in 
the Optimal scenario, more treatment was needed per acre and more acres needed to be treated in 
order to meet the TMDL abatement goals. 

Further research with additional data on management options and observable proxies for water quality 
impacts from fields could improve the recommended targeting criteria. In addition, the development 
of acceptable modeling tools could have major benefits, enabling the implementation of performance-
based approaches. Water quality goals could then be met with fewer acres treated and less extensive 
treatment on those acres, which is particularly desirable under tight conservation budgets.

Fostering Political Agreement May Require Some Sacrifice in 
Efficiency

Focusing the bulk of management changes in a particular region may seem inequitable, especially 
if the region does not enjoy the benefits of improved water quality (as in the case of Pennsylvania). 
“Spreading the pain” over the entire watershed may be politically desirable to achieve buy-in from 
all the CBW States. However, as demonstrated with the design of performance-based approaches, 
a policy becomes increasingly less efficient as it engages fields in parts of the watershed that 
contribute relatively little to the problem. There can be a significant tradeoff between efficiency 
(least cost) and equity (treating political jurisdictions more equally). Still, there may be local benefits 
from improving cropland management over a wider area that we do not account for in our analysis.

Purely Voluntary Approaches Have Some Notable Drawbacks

Meeting the TMDL requires significant reductions in agricultural nonpoint-source pollution. The 
history of voluntary approaches for meeting watershed water quality goals is not encouraging. 
Under a voluntary approach, it is difficult or expensive to entice those farmers who can provide 
the most abatement at least cost to enroll in programs and to adopt the most cost-effective prac-
tices for improving water quality. Our models indicate that when farmers are allowed to select 
which management systems to implement, the TMDL goals are usually not met. Farmers adopted 
those systems that are least costly to them for meeting the policy, and not necessarily those that 
reduced pollution at least cost. It may be possible to address this through changes in the way 
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conservation resources are directed. For example, our analysis indicated that the Susquehanna 
watershed can provide much abatement at a relatively low cost. The proactive development of rela-
tionships by resource managers with those farms in the watershed most in need of improvement 
(rather than waiting for farmers to ask for assistance) and the provision of appropriate education, 
technical, and financial assistance could greatly improve the efficiency of a voluntary approach. 
While the administrative costs may be higher, the benefits in terms of increased program effi-
ciency may be significant. 

Using Stringent Baselines To Obtain Additional Nonpoint-Source 
Abatement Hurts Trading

In the absence of regulations on nonpoint-source pollution, adopting stringent eligibility baselines 
for nonpoint sources in a point-nonpoint trading program in order to obtain additional abatement 
for meeting a TMDL’s Load Allocation could seriously restrict trading while obtaining very little 
additional abatement. A strict baseline that would require most farms to adopt additional abatement 
measures in order to trade so restricts credit supply that few credits are traded, and little “extra” 
abatement is provided for Load Allocation. On the other hand, a less stringent baseline that most 
farms could meet benefits the credit market and encourages extra abatement that goes to Load 
Allocation. Point sources benefit most when current practices serve as the baseline (no abatement for 
Load Allocation). An alternative approach could be to use incentives such as traditional conservation 
programs to encourage abatement for Load Allocation rather than trying to use a trading program 
to meet multiple goals. Our analysis shows that there is enough potential pollution abatement from 
nonpoint sources for both meeting the TMDL load allocation and for supporting a trading market 
with relatively low-cost credits.

Achieving a Better Manure Nutrient Balance 

Improving the management of manure is an important part of State plans for meeting the TMDL. 
The proper implementation of nutrient management practices on animal operations cannot occur 
until excess manure nutrients are moved to where they can be applied according to standards of a 
nutrient management plan. This additional cost for complying with a nutrient management plan is 
an important consideration for animal producers. Such costs range between $18 million and $22 
million per year in the CBW, assuming half of crop producers are willing to accept manure as 
a nutrient source. Off-farm hauling costs could be mitigated through education, technical assis-
tance, and financial incentives related to manure management that increase the willingness of crop 
producers to substitute manure nutrients for commercial fertilizer. Targeting program efforts to 
areas where competition for suitable land is greatest may achieve the greatest benefit. The cost of 
such efforts would have to be weighed against the benefits from reduced hauling. Public entities 
may also help to facilitate market exchanges for manure. A 2011 follow-up survey to the 2003-2006 
NRCS CEAP survey found that cropland receiving manure from off-farm sources increased from 17 
percent of manured cropland in 2006 to 34 percent in 2011 (USDA, NRCS, 2013). This could be in 
response to State efforts to encourage more effective use of manure resources under the TMDL.

Developing alternative uses for manure, such as biomass energy, could reduce the hauling problem 
while providing additional income for animal producers. However, farmers who have come to rely 
on manure as a source of nutrients and a valuable soil amendment may face rising manure prices or 
limits on manure supplies as manure is diverted for power generation. Such costs would have to be 
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weighed against the benefits of local energy production. Given the costs of alternative fuels such as 
natural gas and concerns over local air quality, the current outlook for biomass options is uncertain. 

Reductions in manure nutrient production may be part of a broader solution to addressing nutrient 
imbalances in the watershed. Changes in feed management and other animal production practices 
have contributed to reduced nutrient loss in the animal waste. Reducing herd size is a more drastic 
approach for achieving a manure-nutrient balance, but there is precedent in Florida. However, the 
savings in reduced hauling costs would be outweighed by the value of lost production. 
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Appendix 1—Modeling Scenarios for Improving Cropland 
Nutrient Management

The representative farm is the primary modeling unit. Expansion factors provided by NRCS 
Conservation Effects Assessment Program (CEAP) are used to describe all agricultural land within 
each four-digit Hydrologic Unit Code (HUC). In this way, the observations account for heterogeneity 
in nutrient losses and adoption costs for best management systems for all agricultural land within 
the Bay watershed. We restricted our analysis to major field crops, which constituted 97.9 percent of 
agricultural land in the Bay. We excluded fields planted to vegetables, as we have less confidence that 
our cost data are representative of these specialized crops. 

In order to meet the Bay TMDL targets, each representative farm can either stay in the baseline 
or adopt one or more of the three practices: nutrient management, cover crops, and soil erosion 
controls. The adoption costs and pollution reduction benefits generated by practice adoption are 
unique to each representative farm and depend on the physical conditions of the land and the current 
practices in place. We assume in our analysis that farms do not enter or exit the sector in response to 
the policy.

Design-Based Scenarios

The benefits and costs of the design-based scenarios were calculated by selecting the observations 
meeting the relevant conditions, then adding up the total costs and pollution reduction benefits.

Performance-Based Scenarios

The performance-based scenarios, other than the tax, were solved using mixed integer program-
ming. The tax model was solved using a two-stage process that is explained in more detail below in 
the description of that model.

Optimal

The optimization model is designed to minimize the total cost of reducing nutrient and sediment 
losses to the watershed, subject to meeting the Bay TMDL pollution reduction targets for N, P, and 
sediment of 25, 24, and 20 percent. Let rk,k∈ {N,P,Sediment} represent the pollutant emission goals 
for the TMDL. That is, {rN,rP,rSediment} = {0.75, 0.76, 0.80}. Each representative farm can choose 
one of eight BMP sets: the baseline (no change); nutrient management; cover crops; soil erosion 
control practices; and each of the four possible combinations of those practices. The model allocates 
BMPs across farms to minimize the objective function expression:

where Cij is the annual adoption cost associated with farm i ∈ {1,…,M} and BMP set j ∈ {0,…,7} 
and xij is a binary variable equal to one if practice set j is adopted. Costs reflect the total costs to the 
farmer of adopting the practice set, including practice implementation costs, the opportunity costs of 
changes in nutrient applications and crop yields, and costs associated with increased risk. 

min
x

i j
ij ijc x∑∑
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Associated with each practice adoption choice xij is a set of field pollutant emissions delivered to 
tidal portions of the Chesapeake Bay

 
dij

k , where k = N,P,Sediment. Let di
k
0 represent delivered emis-

sions for pollutant k by observation i using baseline practices and let the aggregate level of emissions 
for pollutant k be given by e dk

i
k= ∑i 0 . 

We have three nutrient reduction constraints to ensure that the solution meets the goals of the 
TMDL:

i j
ij
k

ij
k kd x r base∑∑ ≤

We have 756 farm practice constraints to make sure the model picks exactly one practice per 
observation:

Regional

Let h index the four-digit HUCs in the watershed and let HUC be a binary variable indicating 
the HUC in which the representative farm operates. The objective function and the farm practice 
constraints are the same as in the optimal scenario, but the regional model requires twelve (h x k) 
nutrient reduction constraints: 

where base HUC dh
k

h i
k= Σ i 0 .

Farm Level

Minimizing the costs of meeting the pollutant reduction goals at the farm level is complicated by the 
fact that it is not possible for all farms to achieve the reductions for any or all of the pollutants. We 
relax this requirement so that farms must adopt new suites of practices (adopt practice suite j ≠ 0) 
if its adoption satisfies at least one of the pollution reduction goals. Let be a variable 
that effectively acts as an extra cost of remaining in the baseline for each pollutant. Let k ∈ +  be a 
scalar that is sufficiently large to make the penalty outweigh the costs of adopting practices. We used   
k = 1,000,000,000,000 to estimate the model. The objection function was specified as:

For consistency, the penaltyi
k variables are also added to the (i x k) nutrient reduction constraints:

min
,x penalty

i j
ij ij

i k

i
k

kc x
penalty

base∑∑ ∑∑+k

Σ jd r d penaltyij
k k

i
k

i
k≤ +0 .
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Tax

The optimization model for the pollutant tax scenario is designed to produce a solution similar to the 
solution produced by the optimal scenario. A two-stage model was used to solve for the optimal tax 
rates and to solve for the optimal distribution of practice adoption under these tax rates. To the cost-
minimization objective, we add tax rates  on each unit of pollutant  delivered to the tidal waters by 
observation i, ei

k :

We use i × k emissions constraints to set the emissions associated with practice suite j, d xij
k

ij , equal 
to emissions ei

k :

Similar to other performance-based models, we have i farm practice constraints so that each obser-
vation implements exactly one suite of practices j:

In the first stage, we also have k emissions reduction constraints so that aggregate pollutant emis-
sions to tidal waters meet the TMDL goals:

In order to address the complexity added by the addition of emissions to the objective, a feasible 
solution to the first-stage model is found using relaxed nonlinear mixed integer programming. The 
optimal tax rates are set equal to the marginal values of the emissions constraints in the first stage. 
In the second stage, the emissions reduction constraints are dropped from the model and the optimal 
distribution of practice adoption is found using mixed integer programming. 

Model Data 

The Chesapeake Bay watershed models rely primarily on data from the CEAP assessment of the 
effects of conservation practices on agricultural land in the watershed. For the analysis, 756 National 
Resources Inventory (NRI) sampling points in the watershed were treated as representative farms 
growing major field crops (excluding vegetables) using sampling weights to describe farm produc-
tion and environmental conditions on 97.9 percent of agricultural land in the watershed. Cost data 
and other information reflecting conditions in the watershed States (DE, MD, NY, PA, VA, WV) 
were obtained from various sources, including State Watershed Implementation Plans, contract data 
from USDA’s Environmental Quality Incentives Program (EQIP), the Chesapeake Bay Program, 
published literature, and subject matter specialists within government and various universities.

min
,x e

i j
ij ij

i k

k
i
kc x t e∑∑ ∑∑+

j
ij
k

ij i
kd x e∑ =

j
ijx∑ = 1

Σ i e r basei
k k k≤ .
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CEAP Model Data

Data from the CEAP model were used to assess the effects of practice adoption on pollutants deliv-
ered to the tidal waters of the basin. We use HUC-level delivery ratios to scale edge-of-field pollutant 
losses to the tidal waters of the Bay. The CEAP model data also provide acreage expansion factors 
to scale representative farms to the HUC-level aggregates. Edge-of-field nitrogen losses are given by 
the total N lost in surface pathways and in subsurface water flow. Edge-of-field phosphorus losses 
are given by P lost with sediment and total soluble P loss. Edge-of-field sediment losses are given by 
the Revised Universal Soil Loss Equation (RUSLE) erosion rate for the cropped region. 

Production Cost Data

We considered only the costs of adopting additional practices: cover crops, soil erosion controls, 
and nutrient management. For each practice, we account for changes in fertilizer application rates, 
changes in crop yields, annualized practice installation costs, and costs related to uncertainty and 
risk. For soil erosion controls, which take arable land out of production, we also consider opportu-
nity costs of the land. Policy transaction costs are not included.

For each of the eight scenarios, we use NRCS-calculated fertilizer application rates, crop yield per 
acre, and the proportion of land cropped. For each year in the crop rotation, we calculated the value 
of output and fertilizer input costs. These data were averaged to represent production costs as the 
average annual cost of implementing new practices. The data from CEAP contain 28 unique crop 
rotations. We estimated the crop value based on reported 2010 State-level crop prices provided by 
USDA’s National Agricultural Statistics Service (NASS). For some crops, State-level prices were not 
available, so we represent the values of these crops using the U.S. price. 

Fertilizer costs are based on reported 2010 prices by NASS. Nitrogen price reflects the U.S. average 
price ($499 per ton) for anhydrous ammonia, which is 82 percent N, or a price per active ingredient 
of $0.30 per pound of N. Phosphorus price reflects the price per ton of superphosphate (46 percent 
P), or an active ingredient price of $0.55 per pound of P. From CEAP, we have information on 
whether manure was used, but we have incomplete data on animal production by the land operators 
and do not know whether the manure applied was produced on the operation. Without information 
on the price paid for the manure applied, we assume the cost of nutrients from manure equals the 
cost of nutrients from chemical fertilizers.

We account for the opportunity cost of land taken out of production for soil erosion controls based 
on 2010 State-level land rental rates for irrigated and non-irrigated land reported by NASS. We 
obtained annualized, State-level installation costs for nutrient management and cover crops from the 
World Resources Institute (WRI).

The specific practices implemented as soil erosion controls in the CEAP report depend on the 
slope, inherent vulnerability of the soil, and proximity to water. Soil erosion controls include grass 
buffers, contouring, and terracing. We obtained annualized, State-level installation costs for grass 
buffers from WRI. Terracing costs were obtained from EQIP contract data and State payment rates. 
For contouring, we relied on the formulas given in Appendix D of NRCS (2003)17 and State EQIP 
payment rates.

17NRCS, 2003, Costs Associated With Development and Implementation of Comprehensive Nutrient Management 
Plans—Part 1.
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Spatial Land Data

Cost data were scaled to the HUC level based on the distribution of cropland within each State and 
HUC boundary. To assess the spatial pattern of cropland within each State and HUC boundary, we 
use the 2007 U.S. Geological Service’s National Land Cover Dataset. This dataset is based primarily 
on 2001 Landsat thematic mapper imagery at 30-meter resolution, classified in 16 land-use catego-
ries for land within the study region. The U.S. Geological Survey Digital Line Graph state bound-
aries and the 8-digit USGS hydrologic units of the Chesapeake Bay Basin can be found at http://
www.chesapeakebay.net/data
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Appendix 2—Updates to the Chesapeake Bay Regional 
Manure Transport Model

The Chesapeake Bay Regional Manure Transport Model, developed for earlier ERS analysis of 
manure-nutrient management (Ribaudo et al., 2003; Aillery et al., 2005), was updated and extended 
for use in the Chesapeake Bay TMDL study. Documentation of the basic model structure and 
supporting data is available in published form (Aillery et. al., 2005, Aillery et al., 2009). Here we 
highlight several changes in the model data and modeling framework that are specific to the TMDL 
analysis presented in this report.

Model Data

NRCS animal manure nutrients. County-level data from the 2007 Census of Agriculture processed 
by NRCS (hereafter referred to as the NRCS dataset) provide the data foundation for the ERS 
regional manure model. The agricultural census data were supplemented with other biophysical and 
production information on the U.S. livestock sector. The NRCS dataset includes estimates of AFO 
and non-AFO farms, confined and non-confined animal production, recoverable and non-recoverable 
manure production, nutrient content of manure, cropland assimilative capacity for manure nutrients 
on AFO and non-AFO farms, and excess manure nutrients produced on AFO farms. Estimates were 
derived from individual farm-level survey data and aggregated by farm type to counties and 6-digit 
hydrologic sub-basins for reporting and research purposes. Data estimation procedures and assump-
tions are detailed in Kellogg et al. (2014) .

Previous applications of the regional manure model drew on an earlier version of the NRCS data-
base, developed from the 1997 census (Kellogg et al., 2000). The 2007 data values reflect the 
changing structure of the animal sector and evolving technology use in animal production and 
manure handling. In some instances, NRCS estimation procedures were modified to provide 
improved measures—as in the case of nutrient assimilative capacity on animal feeding operations 
(AFOs) and resulting manure-nutrient excess. Census survey data on farmland receiving manure, 
included separately for AFOs and non-AFOs in the NRCS database, provide the basis for 2007 base 
conditions under the TMDL analysis. 

ERS analysis was further informed by NRCS assumptions developed for a national simulation 
analysis of county-level excess manure nitrogen (Kellogg et al., 2014). Key assumptions involved 
nitrogen application-uptake ratios used in calculating applied manure (with and without full conser-
vation treatment), the share of AFO cropland acreage considered to be soil-P limiting or highly 
erodible in the basin (from the Chesapeake Bay CEAP study), the share of permanent pastureland 
assumed unsuitable for manure on non-AFO farms, and the willingness of landowners to accept 
manure. In some local areas, the application of biosolids from wastewater treatment plants competes 
for available agricultural land, although we do not account for this in our study. In other areas, 
animal manure has been used on commercial forestland (Catma and Collins, 2011), which is not 
considered part of the potential land base assumed in our study. To the extent possible, the ERS anal-
ysis was designed to maintain consistency with NRCS data and simulation assumptions.

GIS Area-to-Distance Functions. Land competition for manure spreading reflects the spatial rela-
tionship among AFOs with excess manure, and the extent and pattern of available land for manure 
spreading. The GIS-derived area-to-distance component—an innovative feature of the ERS regional 
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manure model—was designed to capture the competition for land, which is an important determi-
nant of manure hauling distance and cost. 

Area-to-distance relationships were updated for the TMDL analysis to more accurately reflect 
current conditions in the regional animal sector. The number of confined animal feeding operations, 
obtained through the NRCS animal-manure database, was derived from reported animal produc-
tion in the 2007 Census of Agriculture. The spatial land cover of cropland and permanent pasture 
was drawn from the 2012 Cropland Data Layer (CDL), developed by USDA’s National Agricultural 
Statistics Service (NASS). 

Revised estimation procedures for GIS area-to-distance functions provided a more realistic assess-
ment of potential hauling distances for use in the TMDL study. Estimation procedures were 
improved in several ways:

• The assignment of AFOs by county and sub-basin is potentially more spatially accurate relative 
to earlier studies based on AFO counts by county, as the 2007 Census of Agriculture collected 
data to identify farm locations, including AFOs by county and HUC-6.

• Consistent with NRCS assumptions, half of permanent pasture acreage—randomly drawn from 
pastureland coverage in the watershed—was assumed unsuitable for manure spreading due to 
terrain, tree cover, soil erodibility, and other factors.

• For each unique intercounty manure transfer from source-county grid to farmland perimeter in 
receiving counties, distances were calculated based on actual road mileage—in contrast with 
the prior estimation, which adjusted linear distances by rough factor adjustments to reflect water 
bodies and other natural barriers.

• For each intercounty transfer, a unique area-to-distance function is estimated for the receiving 
county, measured from the perimeter point of access to farmland.

• For all intra- and intercounty area-to-distance functions, county-specific circuity factors that 
convert from linear to road distance, and are estimated from actual road miles, replace State-level 
circuity factors applied in the prior analyses. 

As with the prior analyses, slope coefficients for the area-to-distance functions were adjusted in 
the simulation model to reflect alternative levels of willingness to accept manure. Lower (higher) 
WTAM levels result in lesser (greater) available acreage on which to spread manure, as well as 
longer (shorter) hauls to access a given land area. In addition, the TMDL analysis introduces an 
index adjustment to intracounty slope coefficients to better reflect AFO size considerations and 
resulting intensity of onfarm manure production on competition for land. The effect is to slightly 
increase hauling distances required to access a given land area in counties where average dry-
manure tonnage per AFO is greatest. 

Other Model Data. Various production and cost data were used in updating the regional manure 
model for use in the TMDL study. The distribution of manure system types by animal species was 
revised based on USDA’s Agricultural Resource Management Survey (ARMS) data for poultry, 
hogs, and dairy. Annual returns above operating costs were drawn from livestock sector data in 
the ERS-REAP national agricultural sector model, based on ERS cost/return estimates and other 
source; costs per live-animal weight were converted to animal-unit equivalents using conversion 
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factors reported in Kellogg et al. (2014). Chemical fertilizer prices for (elemental) nitrogen and 
phosphorus, as well as prices paid for poultry litter, were obtained from Pease et al. (2012).

Manure used in non-cropland applications was estimated from available sources, as published 
estimates are generally unavailable. Poultry litter tonnage used annually for manure pelletization 
was drawn from the Maryland Watershed Implementation Plan. Manure diversions for small-scale 
composting were derived from the ARMS poultry survey. The Chesapeake Bay model provided 
more spatially detailed estimates on annual nitrogen deposition rates by county, which were used in 
adjusting agronomic rates for applied manure. 

Per-unit hauling and application costs in the model largely draw on values compiled for the prior 
model version. Hauling costs are specified per ton and unit-distance, by manure handling system 
and distance interval traveled. Land application costs are specified per acre, with and without 
incorporation/injection. We assume that 50 percent of manure applied to cropland is incorpo-
rated under the BASE2007 scenario (NRCS-CEAP, 2011), increasing to 100 percent under NMP 
compliance scenarios.

Model Structure

While the basic structure of the ERS regional manure model is essentially the same as that 
used in previous studies, a number of changes were incorporated for use in the TMDL analysis. 
Modifications in model structure reflect both the availability of source model data as well as revised 
objectives of the study analysis. Key model extensions are as follows:

• The model was restructured around four AFO size classes—Large AFO-CAFOs, Medium 
AFO-CAFOs, Small AFOs, and Very Small AFOs, as defined in the NRCS animal-nutrient data 
and patterned after EPA regulatory distinctions by farm class. This enables analysis of scenarios 
differentiated by AFO type, although AFO size distinctions were not a focus of the TMDL 
analysis.

• The model was extended to consider multiple nonfarm uses of manure, including pelletization, 
composting, and biomass energy. 

• Model extensions also support analysis of animal number reductions as a means of addressing 
manure excess. This includes estimation of weighted manure-excess per animal-unit and returns 
per animal-unit forgone.

• Selected output variables are reported at both the county level and 6-digit hydrologic sub-basin, 
providing greater opportunity to evaluate variation in production conditions and policy impacts 
across areas of the watershed. 

Whereas the 1997 NRCS dataset included estimates of farm-level excess and land assimilative 
capacity for manure-nutrients under both a nitrogen and phosphorus-based standard, the 2007 NRCS 
dataset assumes a nitrogen standard. While this limited our capacity in the TMDL study to examine 
manure hauling implications under a P-based standard, assumed reductions in AFO spreadable land 
acreage due to P-limited soils addresses the phosphorus concern to some degree. 


