Appendix--Alternative Ways to Estimate the Value of a Conservation Easement

The table below summarizes alternative ways to estimate the per-acre value of a conservation easement, as discussed in the text, based on the expected net returns illustrated in figure 4.
$\mathrm{R}_{\mathrm{at}} \quad$ expected annual net returns to agricultural use ($\$ 100$ per acre every year)
$\mathrm{R}_{\mathrm{ut}} \quad$ expected annual net returns to urban use (\$50 per acre in the first year, then $\$ 150$ per acre every year thereafter)
i discount rate (5 percent per year, every year)
T duration of the easement (infinite)
$\mathrm{V}_{\mathrm{B} 0} \quad$ today's per-acre value of the land before restrictions are imposed (determined below)
$\mathrm{V}_{\mathrm{A} 0}$ today's per-acre value of the land after restrictions are imposed ($\$ 2,000$ per acre)
$\mathrm{V}_{\mathrm{e} 0}$ today's per-acre easement value; $=\mathrm{V}_{\mathrm{B} 0}-\mathrm{V}_{\mathrm{A} 0}$ (determined below)
t* optimal time to convert from agricultural to developed use (determined below)
Method 1 compares the two uses assuming that expected returns remain constant at current levels.
Method 2 compares the two uses recognizing that expected urban returns change after the first year.
Method 3 considers the best sequence of uses, if conversion were to take place at the optimal time.
Method 4 considers the option of waiting for more information on adjacent development plans.

	$\mathrm{V}_{\mathrm{B} 0}$	$\mathrm{V}_{\mathrm{A} 0}$	$\mathrm{V}_{\mathrm{e} 0}$	t^{*}
1	$\begin{aligned} & \max \left\{\mathrm{R}_{\mathrm{a} 0}, \mathrm{R}_{\mathrm{u} 0}\right\} / \mathrm{i} \\ & =\max \{100,50\} / 0.05 \\ & =\$ 2,000 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{a0}} / \mathrm{i} \\ & =100 / 0.05 \\ & =\$ 2,000 \end{aligned}$	\$2,000 -\$2,000 $=\$ 0$	never
2	$\begin{aligned} & \max \left\{\sum_{\mathrm{t}=1}^{\infty} \mathrm{R}_{\mathrm{a}} /(1+\mathrm{i})^{\mathrm{t}}, \sum_{\mathrm{t}=1}^{\infty} \mathrm{R}_{\mathrm{u}} /(1+\mathrm{i})^{\mathrm{t}}\right\} \\ & =\max \left\{\sum_{\mathrm{t}=1}^{\infty} 100 / 1.05^{\mathrm{t}}, 50 / 1.05+\sum_{\mathrm{t}=2}^{\infty} 150 / 1.05^{\mathrm{t}}\right\} \\ & =\max \{2000,48+2857\} \\ & =\$ 2,905 \end{aligned}$	$\begin{aligned} & \sum_{t=1}^{\infty} \mathrm{R}_{\mathrm{a} l} /(1+\mathrm{i})^{\mathrm{t}} \\ & =\sum_{\mathrm{t}=1}^{\infty} 100 / 1.05^{\mathrm{t}} \\ & =100 / 0.05 \\ & =\$ 2,000 \end{aligned}$	$\begin{array}{r} \$ 2,905 \\ -\$ 2,000 \\ =\$ 905 \end{array}$	1st year
3	$\begin{aligned} & \sum_{\mathrm{t}=1}^{\infty} \max \left\{\mathrm{R}_{\mathrm{a} t}, \mathrm{R}_{\mathrm{ut}}\right\} /(1+\mathrm{i})^{\mathrm{t}} \\ & =\max \left\{\mathrm{R}_{\mathrm{a} 1}, \mathrm{R}_{\mathrm{u}}\right\} / 1.05+\sum_{\mathrm{t}=2}^{\infty} \max \left\{\mathrm{R}_{\mathrm{a} 1}, \mathrm{R}_{\mathrm{u}}\right\} / 1.05^{\mathrm{t}} \\ & =\max \{100,50\} / 1.05+\sum_{\mathrm{t}=2}^{\infty} \max \{100,150\} / 1.05^{\mathrm{t}} \\ & =\$ 95+\$ 2,857 \\ & =\$ 2,952 \end{aligned}$	$\begin{aligned} & \sum_{\mathrm{t}=1}^{\infty} R_{\mathrm{a}} /(1+\mathrm{i})^{\mathrm{t}} \\ & =\sum_{\mathrm{t}=1}^{\infty} 100 / 1.05^{\mathrm{t}} \\ & =100 / 0.05 \\ & =\$ 2,000 \end{aligned}$	$\begin{array}{r} \$ 2,952 \\ -\$ 2,000 \\ =\$ 952 \end{array}$	2nd year
4		$\begin{aligned} & \sum_{\mathrm{t}=1}^{\infty} \mathrm{R}_{\mathrm{a}} /(1+\mathrm{i})^{\mathrm{t}} \\ & =\sum_{\mathrm{t}=1}^{\infty} 100 / 1.05^{\mathrm{t}} \\ & =100 / 0.05 \\ & =\$ 2,000 \end{aligned}$	$\begin{array}{r} \$ 3,429 \\ -\$ 2,000 \\ =\$ 1,429 \end{array}$	2nd year or never

