Appendix--Alternative Ways to Estimate the Value of a Conservation Easement

The table below summarizes alternative ways to estimate the per-acre value of a conservation easement, as discussed in the text, based on the expected net returns illustrated in figure 4.

- R_{at} expected annual net returns to agricultural use (\$100 per acre every year)
- R_{ut} expected annual net returns to urban use (\$50 per acre in the first year, then \$150 per acre every year thereafter)
- i discount rate (5 percent per year, every year)
- T duration of the easement (infinite)
- V_{B0} today's per-acre value of the land before restrictions are imposed (determined below)
- V_{A0} today's per-acre value of the land after restrictions are imposed (\$2,000 per acre)
- V_{e0} today's per-acre easement value; = V_{B0} V_{A0} (determined below)
- t* optimal time to convert from agricultural to developed use (determined below)

Method 1 compares the two uses assuming that expected returns remain constant at current levels. Method 2 compares the two uses recognizing that expected urban returns change after the first year. Method 3 considers the best sequence of uses, if conversion were to take place at the optimal time. Method 4 considers the option of waiting for more information on adjacent development plans.

	V _{B0}	V _{A0}	V _{e0}	t*
1	$\max\{R_{a0}, R_{u0}\}/i$ = max{100, 50}/0.05 = \$2,000	R _{a0} /i = 100/0.05 = \$2,000	\$2,000 - <u>\$2,000</u> = \$0	never
2	$\max\{\sum_{t=1}^{\infty} R_{at}/(1+i)^{t}, \sum_{t=1}^{\infty} R_{ut}/(1+i)^{t}\} = \max\{\sum_{t=1}^{\infty} 100/1.05^{t}, 50/1.05 + \sum_{t=2}^{\infty} 150/1.05^{t}\} = \max\{2000, 48 + 2857\} = \$2,905$	$\sum_{t=1}^{\infty} R_{at} / (1+i)^{t}$ = $\sum_{t=1}^{\infty} 100 / 1.05^{t}$ = $100 / 0.05$ = \$2,000	\$2,905 - <u>\$2,000</u> = \$905	1st year
3	$\begin{split} &\sum_{t=1}^{\infty} \max\{R_{at}, R_{ut}\}/(1+i)^{t} \\ &= \max\{R_{a1}, R_{u1}\}/1.05 + \sum_{t=2}^{\infty} \max\{R_{a1}, R_{ut}\}/1.05^{t} \\ &= \max\{100, 50\}/1.05 + \sum_{t=2}^{\infty} \max\{100, 150\}/1.05^{t} \\ &= \$95 + \$2,857 \\ &= \$2,952 \end{split}$	$\sum_{t=1}^{\infty} R_{at} / (1+i)^{t}$ = $\sum_{t=1}^{\infty} 100 / 1.05^{t}$ = 100/0.05 = \$2,000	\$2,952 - <u>\$2,000</u> = \$952	2nd year
4	$\begin{split} R_{a1}/(1+r) &+ 0.5(\sum_{t=2}^{\infty} max\{R_{at}, R_{ut}^{H}\}/(1+i)^{t}) \\ &+ 0.5(\sum_{t=2}^{\infty} max\{R_{at}, R_{ut}^{L}\}/(1+i)^{t}) \\ &= 100/1.05 + 0.5(\sum_{t=2}^{\infty} max\{100, 250\}/1.05^{t}) \\ &+ 0.5(\sum_{t=2}^{\infty} max\{100, 50\}/1.05^{t}) \\ &= \$95 + \$2,381 + \$952 \\ &= \$3,429 \end{split}$	$\sum_{t=1}^{\infty} R_{at} / (1+i)^{t}$ = $\sum_{t=1}^{\infty} 100 / 1.05^{t}$ = 100/0.05 = \$2,000	\$3,429 - <u>\$2,000</u> = \$1,429	2nd year or never