Appendix A ### Summary of Impact Studies Identified in the Literature Review Note: As discussed in the text, all identified research that described differences between participants and nonparticipants is included in these tables. Although some of these studies had weak designs or used rudimentary or, in some cases, no statistical analysis, they are included in the interest of completeness. The tables include information about both design and analysis methods. In interpreting findings from the complete body of research for a given program, greater weight was given to findings from studies that had the strongest design and analysis methods and that used the most recent data. ### **Food Stamp Program** | Study | Data source ¹ | Measure of expenditures ² | Population (sample size) | Design | Measure of participation | Analysis method | |------------------------------|---------------------------------------|---|---|--|--|---| | Group IA: Particip | ant vs. nonparticipan | t comparisons—Secondary | / analysis of nationa | l surveys | | | | Hama and
Chern (1988) | 1977-78
NFCS elderly
supplement | At-home
Nonpurchased food
included
Per person per week | FSP-eligible
households with
elderly members
(n=1,454) | Participant vs.
nonparticipant | Participation dummy | Simultaneous food
expenditure/nutrient
availability equation ³ | | Kisker and
Devaney (1988) | 1979-80 NFCS-LI | At-home
Nonpurchased food
included
Per ENU per week | FSP-eligible
households
(n~2,900) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Basiotis et al.
(1983) | 1977-78 NFCS-LI | At-home
Nonpurchased food
included
Per household per week | FSP-eligible
households
(n=3,562) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Price (1983) | 1973-74 BLS-CES | At-home Purchased food only Per equivalent adult per week | All households
(n=10,359) | Participant vs.
nonparticipant;
also dose-
response | Participation dummy;
benefit amount | Multivariate regression | | Salathe (1980) | 1973-74 BLS-CES | At-home, away, total
Purchased food only
Per person per week | FSP-eligible
households
(n=2,254) | Participant vs.
nonparticipant;
also dose-
response | Participation dummy;
benefit amount | Multivariate regression | | Group IB: Particip | ant vs. nonparticipan | t comparisons—State and | local studies | | | | | Lane (1978) | Kern County, CA
(1972-73) | At-home
Nonpurchased food
included
Per person per month | FSP-eligible
households
(n=329) | Participant vs.
nonparticipant | Participation dummy | Bivariate comparisons
based on proportion of
income spent on food | | West et al. (1978) | Washington State
(1972-73) | At-home
Nonpurchased food
included
Per equivalent
adult per month | FSP-eligible
households with
child age 8-12
(n=332) | Participant vs.
nonparticipant;
also dose-
response | Participation dummy;
bonus amount | Weighted multivariate regression | | Study | Data source ¹ | Measure of expenditures ² | Population (sample size) | Design | Measure of participation | Analysis method | |----------------------------------|--------------------------|---|--|---------------|--|---| | Group II A: Dose-I | response estimates– | -Secondary analysis of nati | onal surveys | | | | | Kramer-LeBlanc
et al. (1997) | 1989-91 CSFII | At-home, total
Purchased food only
Per household per week | FSP participant
households
(n=790) | Dose-response | Benefit amount | Multivariate regression | | Levedahl (1991) | 1979-80 NFCS-LI | At-home, total
Purchased food only | FSP participants
who used all their
food stamps
(n=1,210) | Dose-response | Bonus value | Multivariate regression | | Fraker et al.
(1990) | 1985 CSFII | Expenditures on food during previous 2 months | FSP- and WIC-
eligible households
(n=515) | Dose-response | Participation dummy;
benefit amount | Multivariate regression | | Devaney and
Fraker (1989) | 1977-78 NFCS-LI | Aided recall of food used in last 7 days | FSP-eligible
households
(n=4,473) | Dose-response | Participation dummy;
bonus value | Multivariate regression | | Basiotis et al.
(1987) | 1977-78 NFCS-LI | At-home
Nonpurchased food
included
Per household per week | FSP-eligible
households
(n~3,000) | Dose-response | Participation dummy;
bonus value | Simultaneous equations for food cost/nutrient availability/nutrient intake relationship | | Senauer and
Young (1986) | 1978 PSID | At-home
Purchased food only
Per household per
month | FSP participant
households
(n=573) | Dose-response | Bonus value | Multivariate regression | | Smallwood and
Blaylock (1985) | 1977-78 NFSC-LI | At-home
Purchased food only
Per person per week | FSP-eligible
households
(n=3,582) | Dose-response | Participation dummy;
expected weekly
bonus value | 2-equation selection-
bias model | | West (1984) | 1973-74 BLS-CES | At-home, away, total
Purchased food only
Per equivalent
adult per week | FSP-eligible
households
(n=2,407) | Dose-response | Participation dummy;
bonus value | Multivariate regression | | Allen and Gadson
(1983) | 1977-78 NFCS-LI | At home, away, total
Purchased food only
Per household per week | FSP-eligible
households
(n=3,850) | Dose-response | Bonus value | Multivariate regression | | Chen (1983) | 1977-78 NFCS-LI | Aided recall of food used in last 7 days | FSP participant
households
(n=1,809) | Dose-response | Participation dummy;
bonus value | Multivariate regression | | Study | Data source ¹ | Measure of expenditures ² | Population (sample size) | Design | Measure of participation | Analysis method | |------------------------------|---|--|---|---------------|-------------------------------------|---| | Brown et al.
(1982) | 1977-78 NFCS-LI | Aided recall of food used in last 7 days | FSP participant
households
(n=911) | Dose-response | Bonus value | Multivariate regression | | Chavas and
Yeung (1982) | 1972-73 BLS-CES | At-home
Purchased food only
Per household per week | FSP-eligible
households,
southern region
(n=659) | Dose-response | Bonus value | Seemingly unrelated regression model, interactions between bonus value and demographic variables ⁵ | | Johnson et al.
(1981) | 1977-78 NFCS-LI | At-home
Nonpurchased food
included
Per household per week | Low-income
households
(n=4,535) | Dose-response | Participation dummy;
bonus value | Multivariate regression | | Benus et al.
(1976) | 1968-72 PSID | Annual expenditures for food used at home | All households (n~3,300) | Dose-response | Participation dummy; bonus value | Dynamic adjustment model | | Hymans and
Shapiro (1976) | 1968-72 PSID | Annual expenditures for food used at home | All households (n~3,300) | Dose-response | Participation dummy; bonus value | Multivariate regression | | Group IIB: Dose-r | response estimates—S | State and local studies | | | | | | Breunig et al.
(2001) | San Diego cashout
demonstration
(1990) | At-home
Purchased food only
Per person per month | FSP participant
households
receiving coupons
(n=487) | Dose-response | Benefit amount | Multivariate regression | | Levedahl (1995) | San Diego cashout
demonstration
(1990) | At-home
Purchased food only
Per person per month | FSP participant
households
receiving coupons
(n=494) | Dose-response | Benefit amount | Multivariate regression | | Ranney and
Kushman (1987) | Counties and county groups in California, Indiana, Ohio, Virginia (1979-89) | At-home
Nonpurchased food
included | FSP-eligible
households
(n=896) | Dose-response | Participation dummy;
bonus value | Multivariate regression | | Neenan and
Davis (1977) | Polk County, FL
(1976) | At-home
Purchased food only
Per household per
month | FSP participant
households
(n=123) | Dose-response | Participation dummy | Multivariate regression | | Study | Data source ¹ | Measure of expenditures ² | Population (sample size) | Design | Measure of participation | Analysis method | |----------------------------|--|--|---|---|--|-------------------------| | West and
Price (1976) | Washington State
(1972-73) | At-home
Nonpurchased food
included
Per equivalent
adult per month | Households with children ages 8-12 ⁶ (n=995) | Dose-response | Bonus value | Multivariate regression | | Group IIIA: Casho | out demonstrations—E | xperimental design | | | | | | Fraker et al.
(1992) | Alabama
cashout
demonstration
(1990) | At-home, away, total
Purchased food only
and nonpurchased
food included
Per household, ENU,
and AME per month | FSP participants
(n=2,386) | Random
assignment of
participants to
check or coupon | Group membership
dummy; benefit
amount | Multivariate regression | | Ohls et al. (1992) | San Diego cashout
demonstration
(1990) | At-home, away, total
Purchased food only
and nonpurchased food
included
Per household, ENU,
and AME per month | FSP participants
(n=1,143) | Random
assignment of
participants to
check or coupon | Group membership
dummy; benefit
amount | Multivariate regression | | Group IIIB: Casho | out demonstrations—N | lonexperimental design | | | | | | Cohen and
Young (1993) | Washington State
cashout
demonstration
(1990) | At-home, away, total Purchased food only and nonpurchased food included Per household, ENU, and AME per month | Households participating in AFDC and who applied after FIP implementation (n=780) | Comparison of treatment and matched comparison counties | Group membership
dummy; benefit
amount | Multivariate regression | | Davis and
Werner (1993) | Alabama ASSETS
demonstration
(1990) | At-home, away, total
Purchased food only
Per household and
AME per month | ASSETS and
FSP participants
(n=1,371) | Comparison of treatment and matched comparison counties | Group membership
dummy; benefit
amount | Multivariate regression | | Study | Data source ¹ | Measure of expenditures ² | Population (sample size) | Design | Measure of participation | Analysis method | |--------------------------|--|--|---|--|--|--------------------------------------| | Beebout et al.
(1985) | 1977 Puerto Rico
supplement to the
NFCS and 1984
Puerto Rico HFCS | At-home, total
Nonpurchased food
included
Per household and
AME per week | Participant and FSP-eligible nonparticipant households using 1977 eligibility criteria (n= 3,995) | Pre-cashout
compared with
cashout
(1977 vs. 1984) | Group membership
dummy; participation
dummy; benefit
amount | 2-equation selection-
bias models | Data sources: ASSETS = Avenues to Self-Sufficiency through Employment and Training Services. BLS-CES = Bureau of Labor Statistics' Consumer Expenditure Survey. CSFII = Continuing Survey of Food Intakes by Individuals. HFCS = Household Food Consumption Survey. NFCS = Nationwide Food Consumption Survey. NFCS-LI = Nationwide Food Consumption Survey - Low Income Supplement. PSID = Panel Study of Income Dynamics. Includes indications of whether the dependent variable corresponds to food consumed at home, food consumed away from home, or all food; whether measure(s) represent only food purchased with cash, credit, or food stamp coupons or include the estimated dollar value of home-grown food, gifts, etc.; whether expenditures are measured per person, per household, per adult male equivalent (AME), per equivalent adult, or per equivalent nutrition unit (ENU); and the time unit for expenditures. Does not treat FSP as endogenous. Eligible participants were isolated in the nonparticipant group. Main effects were not reported. Eligible participants not isolated in the nonparticipant group. FIP = Family Independence Program. Appendix table 2—Studies that examined the impact of the Food Stamp Program on household availability of food energy and nutrients | Study | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |-------------------------------|---------------------------------------|--|---|-----------------------------------|-------------------------------------|---| | Group IA: Partici | pant vs. nonparticipan | t comparisons—Secondar | y analysis of nationa | l surveys | | | | Hama and
Chern (1988) | 1977-78
NFCS elderly
supplement | Aided recall for food use
from household supply
(7 days) | FSP-eligible
households with
elderly members
(n=1,454) | Participant vs.
nonparticipant | Participation dummy | Simultaneous food
expenditure/nutrient
availability equation ² | | Kisker and
Devaney (1988) | 1979-80 NFCS-LI | Record of household food use (7 days) | FSP-eligible
households
(n~2,900) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Allen and
Gadson (1983) | 1977-78 NFCS-LI | Aided recall for food use from household supply (7 days) | FSP-eligible
households
(n=3,850) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Basiotis et al.
(1983) | 1977-78 NFCS-LI | Aided recall for food use from household supply (7 days) | FSP-eligible
households
(n=3,562) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Scearce and
Jensen (1979) | 1972-73 BLS-CES | Food category amount and expenditure diary | FSP-eligible,
southern region
(n=1,360) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Group IB: Partici | pant vs. nonparticipan | t comparisons—Local stud | lies | | | | | Lane (1978) | Kern County, CA
(1972-73) | 24-hour recall of food consumed at home | FSP-eligible
households
(n=329) | Participant vs.
nonparticipant | Participation dummy | Bivariate comparisons | | Group II: Dose-re | sponse estimates—Se | econdary analysis of nation | nal surveys | | | | | Devaney and
Moffitt (1991) | 1979-80 NFCS-LI | Record of household food use (7 days) | FSP-eligible
households
(n=2,925) | Dose-response | Benefit amount | Multivariate regression; selection-bias models | | Basiotis et al.
(1987) | 1977-78 NFCS-LI | Aided recall for food use
from household supply
(7 days) | FSP-eligible
households
(n~3,000) | Dose-response | Participation dummy;
bonus value | Simultaneous equations for food cost/nutrient availability/nutrient intake relationship | | Johnson et al.
(1981) | 1977-78 NFCS-LI | Aided recall for food use from household supply (7 days) | Low-income
households
(n=4,535) | Dose-response | Participation dummy;
bonus value | Multivariate regression | | See notes at end o | of table | · | | | | Continue | Appendix table 2—Studies that examined the impact of the Food Stamp Program on household availability of food energy and nutrients—Continued | Study | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |---------------------------|--|--|---|---|--|--------------------------------------| | Group IIIA: Casho | out demonstrations—E | xperimental design | | | | | | Bishop et al.
(2000) | Alabama cashout
demonstration
(1990) and
San Diego cashout
demonstration
(1990) | 7-day food use from records and recall | Alabama FSP participants (n=2,184) San Diego FSP participants (n=935) | Random
assignment of
participants to
check or coupon | Group membership
dummy | Stochastic dominance methods | | Fraker et al.
(1992) | Alabama cashout
demonstration
(1990) | 7-day food use from records and recall | FSP participants
(n=2,386) | Random
assignment of
participants to
check or coupon | Group membership
dummy; benefit
amount | Multivariate regression | | Ohls et al. (1992) | San Diego cashout
demonstration
(1990) | 7-day food use from records and recall | FSP participants
(n=1,143) | Random
assignment of
participants to
check or coupon | Group membership
dummy; benefit
amount | Multivariate regression | | Group IIIB: Casho | out demonstrations—N | lonexperimental design | | | | | | Cohen and
Young (1993) | Washington State
cashout
demonstration
(1990) | 7-day food use from records and recall | Households participating in AFDC and who applied after FIP ³ implementation (n=780) | Comparison of treatment and matched comparison counties | Group membership
dummy; benefit
amount | Multivariate regression | | Beebout et al.
(1985) | 1977 Puerto Rico
supplement to the
NFCS and 1984
Puerto Rico HFCS | 7-day food use from records and recall | Participant and FSP-eligible nonparticipant households using 1977 eligibility criteria (n= 3,995) | Pre-cashout
compared with
cashout
(1977 vs. 1984) | Group membership
dummy; participation
dummy; benefit
amount | 2-equation selection-
bias models | Data sources: BLS-CES = Bureau of Labor Statistics' Consumer Expenditure Study. HFCS = Household Food Consumption Survey. NFCS = Nationwide Food Consumption Survey. NFCS-LI = Nationwide Food Consumption Survey - Low Income Supplement. Does not treat FSP as endogenous. FIP = Family Independence Program. ### Appendix table 3—Studies that examined the impact of the Food Stamp Program on dietary intakes of individuals | Study | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method |
--|--|---|---|-----------------------------------|--|---| | Group IA: Participa | ant vs. nonparticipant | comparisons—Seconda | ary analysis of national | surveys | | | | Dixon (2002) | 1988-94
NHANES-III | 24-hour recall | Adults ages 20 and older (n=10,545) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Bhattacharya and
Currie (2000) | 1988-94
NHANES-III | 24-hour recall
and nonquantified
food frequency | Youth ages 12-16
(n=1,358) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Wilde et al.
(1999) | 1994-96 CSFII | 2 nonconsecutive
24-hour recalls | Low-income
individuals
(n=1,901) | Participant vs.
nonparticipant | Participation dummy | Maximum likelihood estimation | | Weimer (1998) | 1989-91 CSFII | 24-hour recall
followed by 2 days
of food records | Elderly
individuals
(n=1,566) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Cook et al. (1995) | 1986 CSFII-LI | 24-hour recall
followed by 2 days
of food records | Children ages 1-5
in households
under 125%
of poverty ² | Participant vs.
nonparticipant | Participation dummy | Bivariate chi-squared tests | | Rose et al. (1995) | 1989-91 CSFII | 24-hour recall
followed by 2 days
of food records | Children ages 1-5
(n=800) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression (weights not used) | | Bishop et al.
(1992) | 1977-78 NFCS-LI | 24-hour recall
followed by 2 days
of food records | FSP-eligible
individuals
(n=2,590) | Participant vs.
nonparticipant | Participation dummy | Stochastic dominance methods | | Fraker et al.
(1990) | 1985 CSFII | 4 nonconsecutive
24-hour recalls | WIC-eligible
women ages 19-50
(n=381) and their
children ages 1-5
(n=818) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression and bivariate selection model | | Gregorio and
Marshall (1984) | 1971-73 NHANES-I | 24-hour recall | Preschool children
(n=2,774),
School-aged
children (n=3,509) | Participant vs.
nonparticipant | Participation dummy;
participation interacted
with poverty index ratio | Bivariate and multivariate regression | | Lopez and
Habicht (1987a,
1987b) | 1971-73 NHANES-I
and 1976-80
NHANES-II | 24-hour recall | Low-income
elderly (n=1,684
and n=1,388) | Participant vs.
nonparticipant | Participation dummy | Multivariate analysis of variance | ### Appendix table 3—Studies that examined the impact of the Food Stamp Program on dietary intakes of individuals—Continued | Study | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |----------------------------------|--|--|---|-----------------------------------|--|---| | Group IB: Particip | ant vs. nonparticipant | comparisons—State an | nd local studies | | | | | Fey-Yensan et al.
(2003) | Low-income areas
in Connecticut
(1996-97) | Food frequency questionnaire | Low-income elderly
living in subsidized
housing (82%
female) (n=200) | Participant vs.
nonparticipant | Participation dummy | Chi-square tests and analysis of variance | | Perez-Escamilla
et al. (2000) | 2 pediatric clinics in
low-income areas of
Hartford, CT (1999) | 24-hour recall and
2 food frequency
questionnaires | Children ages 8
months to 5 years
who were
participating in WIC
or who had
participated in past
year (n=99) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Perkin et al.
(1988) | 1 urban family
practice center in
Florida (dates for
data collection not
reported) | 24-hour recall | Women ages
18-45 (n=102) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Posner et al.
(1987) | 1980-81
FNS SSI/ECD | 24-hour recall
via telephone | Elderly
(n=1,900) | Participant vs. nonparticipant | Participation dummy | Multivariate regression | | Butler et al.
(1985) | 1980-81
FNS SSI/ECD | 24-hour recall
via telephone | Low-income elderly individuals (n=1,684) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression with selection-bias technique | | Futrell et al.
(1975) | 1 county in
Mississippi (1971) | 4-day record | Black children
ages 4-5 (n=96) | Participant vs. nonparticipant | Participation dummy | Bivariate t-tests | | Group IIA: Dose-re | esponse estimates—S | econdary analysis of na | tional surveys | | | | | Gleason et al.
(2000) | 1994-96
CSFII/DHKS | 2 nonconsecutive
24-hour recalls | Low-income
individuals
(n=3,935) | Dose-response | Benefit amount | Comparison of regression-adjusted means | | Basiotis et al.
(1998) | 1989-91 CSFII | 24-hour recall
followed by 2 days
of food records | Low-income
households
(n=1,379) | Dose-response | Participation dummy;
benefit amount | Multivariate regression | # Appendix table 3—Studies that examined the impact of the Food Stamp Program on dietary intakes of individuals—Continued Data collection Population Measure of | Study | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |---------------------------------|--|---|--|---------------|--|--| | Rose et al.
(1998a) | 1989-91 CSFII | 24-hour recall
followed by 2 days
of food records | Nonbreastfeeding preschoolers (n=499) | Dose-response | Benefit amount | Multivariate regression; investigated selection bias | | Kramer-LeBlanc
et al. (1997) | 1989-91 CSFII | 24-hour recall
followed by 2 days
of food records | FSP-eligible
individuals
(n=793) | Dose-response | Benefit amount | Multivariate regression | | Akin et al. (1987) | 1977-78 NFCS
elderly supplement | 24-hour recall
followed by 2 days
of food records | Elderly
individuals
(n=5,615) | Dose-response | Participation dummy;
bonus value;
participation interacted
with social security
income | Multivariate regression | | Basiotis et al.
(1987) | 1977-78 NFCS-LI | 24-hour recall
followed by 2 days
of food records | FSP-eligible
individuals
(n=3,000) | Dose-response | Participation dummy;
bonus value | Simultaneous equations for food cost/nutrient availability/ nutrient intake relationship | | Akin et al. (1985) | 1977-78 NFCS
elderly supplement | 24-hour recall
followed by 2 days
of food records | Elderly
individuals
(n=1,315) | Dose-response | Participation dummy;
bonus value | Multivariate switching regression model | | Group IIB: Dose-r | esponse estimates—S | State and local studies | | | | | | Butler and
Raymond
(1996) | 1980-81
FNS SSI/ECD
and 1969-73 RIME | 24-hour recall
via telephone
and in-person | Low-income
elderly individuals
(n=1,542)
Low-income
individuals in
rural areas
(n=1,093) | Dose-response | Participation dummy;
bonus value | Multivariate endogenous switching model with selection- bias adjustment | ### Appendix table 3—Studies that examined the impact of the Food Stamp Program on dietary intakes of individuals—Continued | Study | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |-----------------------|----------------------------|------------------------|--|---------------|-------------------------------------|-------------------------| | Whitfield (1982) | Tulsa, OK (1978) | 24-hour recall | FSP-eligible
individuals
(n=195) | Dose-response | Participation dummy;
bonus value | Multivariate regression | | West et al.
(1978) | Washington State (1972-73) | Unspecified | Children ages 8-12
(n=728) | Dose-response | Bonus value | Multivariate regression | ¹Data sources: CSFII = Continuing Survey of Food Intakes by Individuals. DHKS = Diet and Health Knowledge Survey. FNS SSI/ECD = Food and Nutrition Service Supplementary Security Income/Elderly Cashout Demonstration. NFCS = Nationwide Food Consumption Survey. NFCS-LI = Nationwide Food Consumption Survey - Low Income Supplement. NHANES = National Health and Nutrition Examination Survey. RIME = Rural Income Maintenance Experiment. ²Sample size not stated. ### Appendix table 4—Studies that examined the impact of the Food Stamp Program on other nutrition and health outcomes | Study | Data source ¹ | Population sample (sample size) | Design | Measure of participation | Analysis method | |-----------------------------------|---|---
------------------------------------|--|--| | Food security: Participa | nt vs. nonparticipant compa | arisons | | | | | Huffman and
Jensen (2003) | 1997 longitudinal
SPD and 1998
experimental SPD | Low-income households (n=3,733) | Participant vs.
nonparticipant | Participation dummy | Simultaneous equation model with 3 probits | | Jensen (2002) | 2000 April
FSS-CPS | FSP and FSP-eligible households (n=6,300) | Participant vs. nonparticipant | Participation dummy | Bivariate ordered probit model | | Gunderson and
Oliveria (2001) | 1991 and 1992 SIPP | Low-income households (n=3,452) | Participant vs. nonparticipant | Participation dummy | Simultaneous equation model with 2 probits | | Bhattacharya and
Currie (2000) | 1988-94 NHANES-III | Youth ages 12-16
(n=1,358) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Perez-Escamilla
et al. (2000) | 2 pediatric clinics in low-
income areas of Hartford,
CT (1999) | Children ages 8 months
to 5 years who were
participating in WIC or
had participated in past
year (n=99) | Participant vs.
nonparticipant | Participation dummy | Chi-square analysis | | Cohen et al. (1999) | 1996-97 NFSPS | Low-income households (n=3,228) | Participant vs. nonparticipant | Participation dummy | Comparisons of proportions | | Alaimo et al. (1998) | 1988-94 NHANES-III | Low-income households (n=5,285) | Participant vs. nonparticipant | Participation dummy | Logistic regression (survey weights) | | Hamilton et al. (1997) | 1995 CPS | Low-income households (n=21,810) | Participant vs. nonparticipant | Participation dummy | Comparison of proportions | | Cristofar and
Basiotis (1992) | 1985-86 CSFII-LI | Low-income women
(n=3,398) and low-
income children ages 1-5
years (n=1,930) | Participants vs.
nonparticipant | Participation dummy;
benefit amount | Multivariate regression | | Kisker and
Devaney (1988) | 1979-80 NFCS-LI | Low-income (n~2,900) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | ### Appendix table 4—Studies that examined the impact of the Food Stamp Program on other nutrition and health outcomes—Continued | Study | Data source ¹ | Population sample (sample size) | Design | Measure of participation | Analysis method | |-------------------------------|--|---|---|---|--| | Food security: Dose-res | ponse estimates | | | | | | Rose et al. (1998b) | 1989-91 CSFII
and 1992 SIPP | All households (n=6,620 and n=30,303) | Dose-response | Annual dollar amount of food stamps | Logistic regression | | Food security: Cashout | demonstrations | | | | | | Fraker et al. (1992) | Alabama cashout
demonstration (1990) | FSP participants
(n=2,386) | Random assignment of participants to check or coupon | Group membership dummy and benefit amount | Multivariate regression | | Ohls et al. (1992) | San Diego cashout
demonstration (1990) | FSP participants
(n=1,143) | Random assignment of participants to check or coupon | Group membership dummy and benefit amount | Multivariate regression | | Davis and
Werner (1993) | Alabama ASSETS
demonstration (1990) | ASSETS and FSP participants (n=1,371) | Comparison of treatment and matched comparison counties | Group membership dummy and benefit amount | Multivariate regression | | Birthweight: Participant | vs. nonparticipant compar | isons | | | | | Korenman and
Miller (1992) | 1979-88 NLSY | Infants born to poor
women with 2 births
between 1979 and 1988
(n~2,568) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression; fixed-effects models | | Currie and Cole (1991) | 1979-87 NLSY | Infants born to poor,
young women (n~4,900) | Participant vs.
nonparticipant | Participation dummy | Multivariate 2-stage least
squares and fixed-effects
model | | Weight and/or height: Pa | articipant vs. nonparticipar | nt comparisons | | | | | Fey-Yensan et al. (2003) | Low-income areas in
Connecticut (1996-97) | Low-income elderly living in subsidized housing (82% female) (n=200) | Participant vs.
nonparticipant | Participation dummy | Chi-square tests and analysis of variance | | Gibson (2003) | 1985-96 NLSY | Low-income women, ages 20-40 (n=13,390) ² | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Jones et al. (2003) | 1997 PSID-CDS | Children ages 5-12 from
households with incomes
<185% of poverty | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Gibson (2001) | 1997
NLSY-child supplement | Youth ages 12-17
(n=7,920) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | See notes at end of table. | | | | | Continued— | #### Appendix table 4—Studies that examined the impact of the Food Stamp Program on other nutrition and health outcomes—Continued | Study | Data source ¹ | Population sample (sample size) | Design | Measure of participation | Analysis method | |-----------------------------------|--|--|---|--------------------------|---| | Bhattacharya and
Currie (2000) | 1988-94 NHANES-III | Youth ages 12-16
(n=1,358) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Korenman and
Miller (1992) | 1986 and 1988
NLSY-child supplement | Children ages 0-7
(n=6,598) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Nutritional biochemistrie | s: Participant vs. nonparti | cipant comparisons | | | | | Dixon (2002) | 1988-94 NHANES-III | Adults ages 20 and older (n=10,545) | Participant vs.
nonparticipant (albumin,
hemoglobin, serum iron,
vitamin C, vitamin E,
carotenoids) | Participation dummy | Multivariate regression | | Bhattacharya and
Currie (2000) | 1988-94 NHANES-III | Youth ages 12-16
(n=1,358) | Participant vs.
nonparticipant (iron,
cholesterol, vitamin A,
vitamin C, vitamin E) | Participation dummy | Multivariate regression | | Lopez and Habicht
(1987b) | 1971-73 NHANES-I and
1976-80 NHANES-II | Low-income elderly
(n=1,684, NHANES-I)
and (n=1,388,
NHANES-II) | Participant vs.
nonparticipant (iron) | Participation dummy | Multivariate ANOVA | | General measures of nut | trition or health status: Par | ticipant vs. nonparticipant | comparisons | | | | Fey-Yensan et al. (2003) | Low-income areas in
Connecticut (1996-97) | Low-income elderly living in subsidized housing (82% female) (n=200) | Participant vs.
nonparticipant | Participation dummy | Chi-square tests and analysis of variance | | Gibson (2001) | 1997 NLSY | Youth ages 12-17
(n=7,920) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | ¹Data sources: ASSETS = Avenues to Self-Sufficiency through Employment and Training Services. FSS-CPS = Food Security Supplement of the Current Population Survey. CPS = Current Population Survey. CSFII = Continuing Survey of Food Intakes by Individuals. CSFII-LI = Continuing Survey of Food Intakes by Individuals - Low-Income Samples. NFCS-LI = Nationwide Food Consumption Survey - Low Income Supplement. NFSPS = National Food Stamp Program Survey. NHANES = National Health and Nutrition Examination Survey. NLSY = National Longitudinal Survey of Youth. PSID-CDS = Panel Study of Income Dynamics - Child Development Supplement. SIPP = Survey of Income and Program Participation. SPD = Survey of Program Dynamics. Multiple observations for each person, collected annually between 1979 and 1994 and biannually thereafter. Sample size represents person-years. ### WIC Program Appendix table 5—Studies that examined the impact of prenatal WIC participation on birth outcomes, including associated health care costs | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |------------------------------|--|---|--|--|---|-------------------------| | Group I: National | evaluations | | | | | | | Rush et al.
(1988a) (NWE) | Birthweight,
gestational age,
likelihood of low
birthweight, very low
birthweight, and
premature birth, and
neonatal and infant
mortality rates | Vital statistics records
for 1,392 counties in
19 States and DC
(1972-80) | N/A
(Aggregate data
analysis) | Trends analysis relating WIC program penetration over time to birth outcomes | WIC penetration index | Multivariate regression | | Rush et al.
(1988d) (NWE) | Birthweight,
gestational age,
likelihood of
premature birth, and
fetal mortality rate | Record abstractions in
174 WIC sites
and 55
prenatal clinics(1983-84) | Nationally representative sample of pregnant WIC participants and income-eligible nonparticipants receiving prenatal care in surrounding public health clinics or hospitals (n=3,935) ³ | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Edozien et al.
(1979) | Birthweight,
gestational age | Primary data collection
in 19 WIC sites in 14
States. Data were
collected at time of WIC
enrollment,
approximately every 3
months until delivery,
and once after delivery
(1973-76) | Postpartum WIC participants who participated prenatally (n~1,000) | Participants,
before vs. after,
separate groups | Newly enrolling participants vs. participants with varying lengths of participation | Multivariate regression | | Group II: Second | ary analysis of national | surveys | | | | | | Finch (2003) | Likelihood of low
birthweight | 1988 NMIHS | WIC and non-WIC
women who were
White, Black, or
Hispanic with live
singleton births that
were at least 22
weeks gestation
(n=12,814) | Participant vs.
nonparticipant | Participation dummy with short- (<6 months) and long-term (6+ months) WIC participation | Multivariate regression | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |---|--|--------------------------|---|------------------------------------|--|--| | Kowaleski-Jones
and Duncan
(2002) | Birthweight | 1990-96 NLSY | (1) NLSY children born between 1990 and 1996 (n=1,984) (2) NLSY children born between 1990 and 1996, with at least 1 other sibling born during the same period (n=453 sibling pairs) | Participant vs.
nonparticipant | Participation dummy | (1) Multivariate regression(2) Fixed-effects model | | Hogan and Park
(2000) | Likelihood of low
birthweight and very
low birthweight | 1988 NMIHS | WIC and non-WIC
women (n=8,145) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Brien and
Swann (1999) | Birthweight,
likelihood of low
birthweight and
premature birth, and
neonatal and infant
mortality rates | 1988 NMIHS | (1) WIC and income-eligible non-Hispanic women who were at nutritional risk (n=7,778) (2) WIC and income-eligible non-Hispanic women with at least 1 live birth prior to 1988 (n=6,254 pairs of births) | Participant vs. nonparticipant | (1) Participation
dummies: 1 for ever
participated and 1 for
participated during first
trimester
(2) Participation status
for each pregnancy | (1) Multivariate regression, including attempt to control for simultaneity and several selection-bias-adjustment models (2) Fixed-effects model; separate models estimated for Blacks and Whites | | Moss and Carver
(1998) | Neonatal mortality rate | 1988 NMIHS | WIC and income-
eligible non-
Hispanic women
(n=7,796) | Participant vs.
nonparticipant | Participation dummy
with and without
Medicaid | Logit analysis | | Frisbie et al.
(1997) | Likelihood of intrauterine growth retardation, premature birth, and heavy preemie | 1988 NMIHS | WIC and non-WIC
women (n=8,424) | Participant vs.
nonparticipants | Participation dummy | Multivariate
regression analysis to
identify determinants of
birth outcomes | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |-----------------------------|--|---|--|---|---|---| | Covington (1995) | Likelihood of low
birthweight and very
low birthweight | 1988 NMIHS | WIC and non-WIC
African American
women who
received some
prenatal care
(n=3,905) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression. Separate models for LBW vs. normal weight and VLBW vs. normal weight for each of 4 subgroups based on combinations of income and receipt of Medicaid and/or AFDC | | Gordon and
Nelson (1995) | Birthweight,
gestational age,
likelihood of low
birthweight, very low
birthweight, and
premature birth, and
neonatal and infant
mortality rates | 1988 NMIHS | WIC and income-
eligible women
(n=6,170) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression and logit analysis. Birthweight analysis included separate models for Blacks and Whites, as well as several alternative models to control for simultaneity. Attempted, but rejected, selection-bias adjustment. | | Joyce et al.
(1988) | Neonatal mortality
rate | 1977 Census data for large counties in the U.S. | Data for 677
counties with
50,000+ residents
for White analysis
and 357 counties
with 5,000+ Blacks
for Black analysis | Cost-
effectiveness
study using
aggregate data | State-specific number
of pregnant women
enrolled in WIC per
1,000 State-specific
eligible women | Multivariate regression, including selection-bias adjustment. Separate models for Blacks and Whites. | | Group III: State-le | vel studies using WIC | participation files matched | d with Medicaid and/o | r birth record files | • | | | Roth et al. (2004) | Likelihood of low
birthweight, very low
birthweight,
neonatal mortality,
postneonatal
mortality, infant
mortality | Linked WIC, Medicaid,
and vital statistics
records for births in
Florida between January
1996 and the end of
December 2000 | WIC and non-WIC
Medicaid recipients
who did not
participate in high-
risk obstetrical
program
(n=295,599) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |-------------------------------|--|--|---|-----------------------------------|--|--| | Gregory and
deJesus (2003) | Likelihood of low
birthweight, very low
birthweight,
neonatal mortality,
and infant mortality,
length of infants'
hospital stay,
Medicaid costs | Linked WIC, Medicaid,
birth and death record,
and hospital discharge
files for births in New
Jersey between May
1992 and December
1993 | WIC and non-WIC
Medicaid recipients
with live singleton
births (n=19,614) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression.
Separate models for
Blacks and non-Blacks | | Buescher and
Horton (2000) | Birthweight,
likelihood of low
birthweight and very
low birthweight,
Medicaid costs | Linked WIC, Medicaid,
and birth record files for
1997 births in North
Carolina | WIC and non-WIC
Medicaid recipients
who were enrolled
in prenatal care
and had live
singleton births
(n=42,965) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression, including several alternative models to control for simultaneity ⁸ | | Ahluwalia et al.
(1998) | Likelihood of low birthweight | Linked WIC and birth
record files for 1992
births in Michigan | WIC and non-WIC
women with full-
term births
(n=53,782) | Participant vs.
nonparticipant | Dose response:
Length of prenatal
WIC "exposure" ⁹ | Multivariate regression | | Buescher et al.
(1993) | Likelihood of low
birthweight and very
low birthweight,
Medicaid costs | Linked WIC, Medicaid,
and birth record files
for 1988 births in
North Carolina | WIC and non-WIC
Medicaid recipients
who were enrolled
in prenatal care
(n=21,900) | Participant vs.
nonparticipant | Participation dummy
and dose-response:
Percentage of
gestation on WIC | Multivariate regression, including attempt to
control for simultaneity 10 | | Devaney and
Schirm (1993) | Likelihood of
neonatal and infant
mortality | FNS WIC/Medicaid
(1987-88) | WIC and non-WIC
Medicaid recipients
(n=111,958) | Participant vs.
nonparticipant | Participation
dummy: Enrolled by 30
weeks gestation | Probit analysis | | Devaney (1992) | Likelihood of very low birthweight | FNS WIC/Medicaid
(1987-88) | WIC and non-WIC
Medicaid recipients
(n=111,958) | Participant vs.
nonparticipant | Participation dummy | Probit analysis, including attempts to control for simultaneity 11 | | Devaney et al.
(1990/91) | Birthweight,
gestational age,
likelihood of
premature birth, and
Medicaid costs | FNS WIC/Medicaid
(1987-88) | WIC and non-WIC
Medicaid recipients
(n=111,958) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression
and probit analysis,
including attempt to
control for simultaneity. ¹²
Attempted but rejected
selection-bias adjustment. | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |--------------------------|--|--|---|---|--|-------------------------| | New York State
(1990) | Birthweight,
gestational age,
likelihood of low
birthweight, very low
birthweight, and
premature birth, and
Medicaid costs | Linked WIC, birth
record, and hospital
discharge files for births
in New York State in the
last 6 months of 1988 | Singleton births to
WIC and non-WIC
women
(n=132,994) | Participant vs.
nonparticipant
within 3 groups
defined on the
basis of
insurance
coverage
(Medicaid,
private, none) | Participation dummy | Multivariate regression | | Simpson (1988) | Likelihood of
low birthweight | Aggregate county-level data for North Carolina, including vital statistics, demographic and service infrastructure characteristics, and program penetration and expenditures (1980-85) | Data for 75 (of 100) counties, all of which provided WIC and other prenatal care services for all county residents (rather than sharing responsibility with another county) | Trends analysis relating WIC penetration over time to birth outcomes | Program "intensity"
variable based on
county-level WIC
expenditures | Multivariate regression | | Stockbauer
(1987) | Birthweight, gestational age, likelihood of low birthweight, very low birthweight, premature birth, small-for- gestational-age, and neonatal mortality | Linked WIC, birth and
death record files for
1982 births in Missouri | Matched WIC and
non-WIC women
with singleton births
(n=9,411 pairs) ¹³ | Participant vs.
matched control | Participation dummy
and dose response:
Dollar value of
redeemed vouchers | Analysis of covariance | | Schramm (1986) | Birthweight,
likelihood of low
birthweight,
neonatal mortality
rate, and Medicaid
costs | Linked WIC, Medicaid,
birth record, hospital
care, and death record
files for 1982 births
in Missouri | WIC and non-WIC
Medicaid recipients
(n=8,546) | Participant vs.
nonparticipant | Participation dummy
and dose response:
WIC food costs
adjusted for length
of pregnancy | Multivariate regression | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |--------------------------------|---|---|---|--|--|---| | Stockbauer
(1986) | Birthweight,
gestational age,
likelihood of low
birthweight, and
neonatal mortality
rate | Linked WIC, birth, and
death record files for
1980 births in Missouri | WIC and non-WIC
Missouri residents
with singleton births
(n=6,732 WIC;
sample for non-
WIC not reported) | Participants vs. 3 different nonparticipant groups: (1) all non-WIC births; (2) random sample of non- WIC births; (3) matched group of non- WIC births | Participation dummy
and dose-response:
Duration of participation
and dollar value of
redeemed WIC
coupons | Analysis of covariance.
Separate analyses for
White, non-White, and
total group. | | Schramm (1985) | Birthweight,
likelihood of low
birthweight,
Medicaid costs | Linked WIC, Medicaid,
birth, and hospital care
records for 1980 births
in Missouri | WIC and non-WIC
Medicaid recipients
(n=7,628) | Participant vs.
nonparticipant | Participation dummy
and dose response:
WIC food costs
adjusted for length
of pregnancy | Analysis of covariance | | Kotelchuck,
et al. (1984) | Birthweight, gestational age, likelihood of low birthweight, premature birth, small-for-gestationalage birth, and neonatal mortality rate | Linked WIC, birth,
and death records
for 1978 births in
Massachusetts | Matched WIC and
non-WIC women
with singleton births
(n=4,126 pairs) ¹⁵ | Participant vs.
matched control | Participation dummy
and dose response:
Months on WIC and
percent of pregnancy
on WIC | Bivariate comparisons | | Group IV: Other S | State and local studies | | | | | | | Reichman and
Teitler (2003) | Birthweight,
likelihood of low
birthweight | Standardized data
collected for women
enrolled in New Jersey's
HealthStart program for
pregnant Medicaid
recipients between 1988
and 1996 | All WIC and non-
WIC HealthStart
participants who
had a live singleton
birth (n=90,117) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression, including attempt to control for simultaneity | | Brown et al.
(1996) | Birthweight,
likelihood of low
birthweight, and
infant mortality rate | Medical records, birth, and
death certificates for
births in 1 Indiana hospi-
tal between January
1988 and June 1989 | Non-Hispanic
women who deliv-
ered at the area's
primary hospital for
the "underserved"
(n=4,707) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |-------------------------------|-------------|--|--|--------------------------------------|---|-------------------------| | Mays-Scott
(1991) | Birthweight | WIC records in 1 county
health department in
Texas (1987-89) | Prenatal WIC participants who were ≤17 years and had at least 1 previous pregnancy (n=217) | Participants,
before
vs. after | Dose response:
Number of months
enrolled, nutrition
education contacts,
and voucher pickups | Analysis of variance | | Collins et al.
(1985) | Birthweight | Primary data collection
in public health
department clinics in 6
Alabama counties
(1980-81) | WIC and non-WIC
pregnant women
(n=519) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Metcoff et al.
(1985) | Birthweight | Primary data
collection at a prenatal
clinic in 1 hospital in
Oklahoma (1983-84) | Income-eligible pregnant women selected at mid-pregnancy based on predicted birthweight; roughly equivalent numbers were predicted to have average-size babies vs. small or large babies (n=410) | Randomized experiment | Participation dummy | Multivariate regression | | Heimendinger et
al. (1984) | Birthweight | WIC and medical
records in 3 WIC clinics
and 4 non-WIC clinics in
the same Boston
neighborhoods
(1979-81) | WIC and Medicaid-
eligible infants and
toddlers up to 20
months of age with
at least 2 height
and weight
measurements 17
(n=1,907) | Participant vs.
nonparticipant | Participation dummy
based on mother's
participation in WIC
during pregnancy | Multivariate regression | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |----------------------------------
---|---|---|------------------------------------|---|--| | Kennedy and
Kotelchuck (1984) | Birthweight,
gestational age,
likelihood of low
birthweight and
small-for-
gestational-age
birth, and fetal
death rate | WIC and medical
records in WIC sites and
non-WIC health facilities
in 4 geographic areas of
Massachusetts
(1973-78)
(Reanalysis of data from
Kennedy et al., 1982) | Matched WIC and
non-WIC pairs of
pregnant women
(n=418 pairs) ^{18, 19} | Participant vs.
matched control | Participation dummy
and dose response:
Number of months
vouchers received | Bivariate comparisons | | Bailey et al.
(1983) | Birthweight | Primary data collection
at 1 WIC site and 1 non-
WIC site in Florida
(Dates not reported) | WIC and income-
eligible nonpartici-
pants who were 30
weeks pregnant at
time of recruitment
and receiving
identical prenatal
care (n=101) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Paige (1983) | Medicaid costs,
health care
utilization | Medicaid records in 4
counties in Maryland, 2
in which WIC was
available and 2 in which
WIC was not available
(1979-80) | WIC and income-
eligible non-WIC
women who were
on Medicaid for at
least 16 weeks
during pregnancy
(n=114) | Participant vs.
nonparticipant | N/A | Comparisons of means
and proportions (no
statistical tests reported) | | Kennedy,
et al. (1982) | Birthweight,
likelihood of low
birthweight | WIC and medical
records in WIC
sites and non-WIC
health facilities in
4 geographic areas
of Massachusetts
(1973-78) | WIC and WIC-
eligible women
(n=1,297) ¹⁸ | Participant vs.
nonparticipant | Participation dummy
and dose response:
Number of vouchers
received, months
on WIC | Multivariate regression | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |------------------|--|--|---|---|--------------------------|-------------------------| | Silverman (1982) | Birthweight,
likelihood of low
birthweight | Medical records for random sample of women enrolled in Maternity and Infant Care Project (MIC) in Allegheny County, PA, before (1971-74) and after (1974-77) initiation of WIC | WIC and income-
eligible
nonparticipants
(n=2,514) | Participants,
before vs. after,
separate groups | Participation dummy | Multivariate regression | Notes: N/A = Not applicable. FNS WIC/Medicaid = FNS' WIC/Medicaid database. NLSY = National Longitudinal Survey of Youth. NMIHS = National Maternal and Infant Health Survey. ²Unless the description of the study sample indicates that a comparison group was limited to nonparticipants who were income-eligible for WIC or known to be Medicaid participants, all income levels were included in the comparison group. Income was generally controlled for in the analysis if the information was available. Maximum analysis sample; sample varies by outcome. Birth outcome data were available for only about 75 percent of women in the study. Intrauterine growth retardation defined as fetal growth ratio of less than 85 percent (observed birthweight at gestational age by mean for gestational age of sex-specific fetal growth distribution). Heavy preemie defined as birthweight of 2,500 gm or more and gestation of less than 37 weeks. (Authors report that mortality rate for heavy preemies may be twice that of normal birthweight infants). Used three alternative definitions of WIC participation to control for simultaneity in analyses of impacts on birthweight and gestational age: (1) during first 8 months; (2) during first 7 months; (3) during first 6 months. Also estimated model for birthweight that controlled for gestational age. For all outcomes, estimated basic model as well as separate models for four different cohorts defined by length of gestation thresholds: 28 weeks, 32 weeks, 36 weeks, and 40 weeks. 'Authors also examined impacts on birth defects, C-section, and complications during pregnancy and delivery. No significant differences were noted for birth defects or complications during pregnancy and delivery. The rate of C-section was significantly greater for WIC participants. Alternative models included (1) women who enrolled in WIC after 33 weeks gestation included in the nonparticipant group, (2) three separate cohorts, based on gestational age (29, 33, and 37 weeks), and (3) gestational age as a control variable. Exposure for women who did participate in WIC was considered high = enrolled before 12 weeks gestation, medium = enrolled at 12-20 weeks gestation, and low = enrolled at 21-37 weeks gestation. In addition to basic model, estimated alternative model that included women who enrolled in WIC at 36 weeks gestation or later in the nonparticipant group. Alternative models defined WIC participants as those who enrolled in WIC (1) before 32 weeks gestation and (2) by 30 weeks gestation. Pairs matched on age, race, education, gravidity, number of births this pregnancy, and marital status. Pairs matched within catchment area on age, race, parity, education, and marital status. 1/The main focus of study was impact of WIC on children's growth; however, the authors compared birthweights of subjects whose mothers were and were not in WIC. Data sources: ¹² Estimated two alternative models: (1) basic model with addition of control for first-trimester WIC participation and gestational age, (2) basic model with WIC participants who enrolled after 36 weeks considered nonparticipants. Pairs matched on age, race, education, number births this pregnancy, smoking during pregnancy, and pre-pregnancy weight. ¹⁶ Included separate model to control for gestational-age bias, but sample was restricted based on initiation of prenatal care (1st or 2nd trimester) rather than timing of WIC enrollment. ¹⁸ WIC-eligible women included in the nonparticipant group were wait-listed for WIC during their pregnancy, enrolled in WIC postpartum, or women who received prenatal care at non-WIC health care facilities in same neighborhood but never enrolled in WIC. Approximately 80 percent of women were matched on race, age, parity, marital status, and income. The remainder were matched on four of the five variables. ### Appendix table 6—Studies that examined the impact of the WIC program on breastfeeding | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |------------------------------|--|---|--|-----------------------------------|--|--| | Group I: Nationa | nl evaluations | | | | | | | Rush et al.
(1988c) (NWE) | Breastfeeding initiation and duration | Primary data collection
in 174 WIC sites and 55
prenatal clinics
(1983-84) | Random sample of infants and children of women included in the longitudinal study of women (see Rush et al., 1988d below) (n=2,370) | Participant vs.
nonparticipant | Participation dummy based on age of inception into WIC, including prenatally | Multivariate regression | | Rush et al.
(1988d) (NWE) | Breastfeeding intention and initiation | Primary data collection
in 174 WIC sites and 55
prenatal clinics
(1983-84) | Nationally representative sample of pregnant WIC participants and comparison group receiving prenatal care in surrounding public health clinics or hospitals (n=3,935) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Group II: Second | dary analysis of nation | nal surveys | | | | | | Chatterji et al.
(2002) | Breastfeeding initiation and duration | 1989-95 NLSY | (1) NLSY children born between 1990 and 1995 (n=1,282) (2) Low-income NLSY children born between 1991 and 1995 (n=517) (3) NLSY children born between 1989 and 1995, with at least one other sibling born during the same period (n=970) | Participant vs.
nonparticipant | Participation dummy | (1) (2) Multivariate regression, including attempt to control for selection bias (3) Fixed-effects model | ### Appendix table 6—Studies that examined the impact of the WIC program on breastfeeding—Continued | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |----------------------------|---------------------------------------
---|---|---|--|---| | Balcazar et al.
(1995) | Breastfeeding intention | 1988 NMIHS live births | Mexican-American
and non-Hispanic
White women who
were not undecided
about infant feeding
plans prior to the
infant's birth
(n=4,089) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | GAO (1993) | Breastfeeding initiation | 1989-92 RLMS | Nationally representative sample of mothers of 6-month-old babies. Analysis included all respondents with complete data for questions of interest (n=79,428) ³ | Prenatal participants vs. nonparticipants and postpartumonly participants | Participation dummy | Multivariate regression | | Schwartz et al.
(1992) | Breastfeeding initiation and duration | 1988 NMIHS | WIC participants
and income-eligible
nonparticipants
(n=6,170) | Participants who received advice to breastfeed compared with participants who did not receive advice and to income-eligible nonparticipants | Participation dummy and advice dummy | 3-stage regression with selection-bias adjustment | | Ryan et al. (1991) | Breastfeeding initiation and duration | 1984 and 1989 RLMS | Respondents in
1984 and 1989
(n=120,334) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Group III: State an | d local studies | | | | | | | Tuttle and Dewey
(1994) | Breastfeeding initiation | Primary data collection in WIC clinics and neighborhoods in 1 northern California community | Hmong and
Vietnamese WIC
participants whose
youngest child was
less than 1 year
(n=122) | Participant vs.
nonparticipant | Dose response:
Number of times
previously participated
in WIC | Multivariate regression | ### Appendix table 6—Studies that examined the impact of the WIC program on breastfeeding—Continued | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |---------------------------|---------------------------------------|---|--|-----------------------------------|--------------------------|--| | Burstein et al.
(1991) | Breastfeeding initiation and duration | Primary data collection
in Florida and North
Carolina (1990-91) | Random sample
of WIC and
income-eligible
infants (6 months
old) stratified by
birthweight (n=807) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression, including attempt to control for selection bias | Data sources: NLSY = National Longitudinal Survey of Youth. NMIHS = National Maternal and Infant Health Survey. RLMS = Ross Laboratories Mother's Survey. ²Unless the description of the study sample indicates that a comparison group was limited to nonparticipants who were income eligible for WIC or known to be Medicaid participants, all income levels were included in the comparison group. Overall response rate for survey was approximately 50 percent. After excluding cases with incomplete data, analysis sample comprised only 34 percent of the initial survey sample. ### Appendix table 7—Studies that examined the impact of the WIC program on nutrition and health outcomes of pregnant women | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |---------------------------------|---|--|--|--|---|-------------------------| | Group I: National | evaluations | | | | | | | Rush et al.
(1988d) (NWE) | Dietary intake,
prevalence of
anemia,
pregnancy weight
gain | Primary data collection
and record abstractions
in 174 WIC sites and 55
prenatal clinics
(1983-84). Data were
collected at time of
enrollment into WIC or
prenatal care and again
at about 8 months
gestation | Nationally representative sample of pregnant WIC participants and comparison group receiving prenatal care in surrounding public health clinics or hospitals (n=3,473) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Edozien et al.
(1979) | Dietary intake,
hemoglobin,
prevalence of
anemia, pregnancy
weight gain | Primary data collection
in 19 sites in 14 States
(1973-76). Data were
collected at time of WIC
enrollment, approxi-
mately every 3 months
until delivery, and once
after delivery | Pregnant women
who enrolled in
WIC (n~2,885) ³ | (1) Nutritional biochemistries: Participants, before vs. after, separate groups (2) Dietary intake: Participants, before vs. after, same women | Dose response: Newly enrolling participants vs. participants with varying length of participation | Multivariate regression | | Group II: Second | ary analysis of nationa | l survey data | | | | | | Mardis and
Anand (2000) | Dietary intake | 1988-94 NHANES-III | WIC and income-
eligible women
(n=242) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Kramer-LeBlanc
et al. (1999) | Dietary intake | 1988-94 NHANES-III | WIC and income-
eligible women
(n=242) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | See notes at end o | f table | | | | | Continued- | Appendix table 7—Studies that examined the impact of the WIC program on nutrition and health outcomes of pregnant women—Continued | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |--------------------------|--|---|--|-----------------------------------|--------------------------|-------------------------| | Group III: State-le | vel studies using WIC | participation files matched | d with Medicaid and/o | r birth record files | 3 | | | Roth et al. (2004) | Pregnancy weight gain | Linked WIC, Medicaid,
and vital statistics
records for births in
Florida between January
1996 and the end of
December 2000 | WIC and non-WIC
Medicaid recipients
who did not
participate in high-
risk obstetrical
program
(n=295,599) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Group IV: Other S | State and local studies | | | | | | | Collins et al.
(1985) | Pregnancy weight gain | Primary data collection
in public health
department clinics in 6
Alabama counties
(1980-81) | WIC and non-WIC pregnant women (n=519) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Metcoff et al.
(1985) | Variety of nutritional biochemistries | Primary data collection
at a prenatal clinic in 1
hospital in Oklahoma
(1983-84) | Income-eligible pregnant women selected at mid-pregnancy based on predicted birthweight; roughly equivalent numbers were predicted to have average-size babies vs. small or large babies (n=410) | Randomized experiment | Participation dummy | Multivariate regression | | Bailey et al.
(1983) | Dietary intake,
nutritional
biochemistries | Primary data collection
at 1 WIC site and 1
non-WIC site in Florida
(Dates not reported) | WIC and income-
eligible nonparti-
cipants were 30
weeks pregnant at
time of recruitment
and receiving
identical prenatal
care (n=101) | Participant vs.
nonparticipant | Participation dummy | Analysis of variance | ### Appendix table 7—Studies that examined the impact of the WIC program on nutrition and health outcomes of pregnant women—Continued | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |--------------------------------|----------------------------------|--|---|--|--|-------------------------| | Kennedy and
Gershoff (1982) | Hemoglobin and hematocrit levels | WIC and medical
records in WIC sites and
non-WIC health facilities
in 4
geographic areas of
Massachusetts
(1973-78) | WIC and WIC-
eligible women ⁴
(n=232) | Participants vs.
nonparticipants,
before and after | Dose response:
Number of WIC
vouchers received | Multivariate regression | | Endres et al.
(1981) | Dietary intake | Dietary recalls for
sample of pregnant WIC
participants in 22
counties in Illinois
(1978-79) | Newly enrolling pregnant WIC participants and participants who were on the program for 6 months or more (n=766) | Participants,
before vs. after,
separate groups | Participation dummy | Bivariate t-tests | Data source: NHANES = National Health and Nutrition Examination Survey. ²Unless the description of the study sample indicates that a comparison group was limited to nonparticipants who were income eligible for WIC or known to be Medicaid participants, all income levels were included in the comparison group. Approximate maximum; sample size varied for each measure and analysis approach. Subset of participants in larger study focusing on impact of WIC on birthweight (see table 5). WIC-eligible women included in the nonparticipant group were wait-listed for WIC during their pregnancy, enrolled in WIC postpartum, or were women who received prenatal care at non-WIC health care facilities in same neighborhood but never enrolled in WIC. ### Appendix table 8—Studies that examined the impact of the WIC program on nutrition and health outcomes of infants and children | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |------------------------------|--|---|---|-----------------------------------|--|---| | Group I: Nationa | l evaluations | | | | | | | Rush et al.
(1988c) (NWE) | Dietary intake,
weight, height, head
circumference, arm
circumference and
skinfold thickness,
immunization
status, use of
preventive health
care, behavior,
vocabulary, and
memory | Primary data collection
in 174 WIC sites and 55
prenatal clinics (1983) | Random sample of infants and children ages 0-4 of women included in the longitudinal study of women (see Rush et al. (1988d) in table 17) (n=2,370) | Participant vs.
nonparticipant | Participation dummy based on age of inception into WIC, including prenatally | Multivariate regression | | Edozien et al.
(1979) | Dietary intake,
blood iron
measures, height,
weight, and head
circumference | Primary data collection
in 19 WIC sites in 14
States. Data collected at
time of WIC enrollment
and again after 6 and 11
months of participation
(1973-76) | WIC infants and children ages 6-47 (n=16,000+) ³ | Participants,
before vs. after | Participation dummy | Multivariate regression | | Group II: Second | lary analysis of national | l surveys | | | | | | Cole and Fox
(2004) | Dietary intake, infant feeding practices, height, weight, variety of nutritional biochemistries, general health status, and dental health | 1988-94 NHANES-III,
usual intake | WIC and income-
eligible children
ages 1-4 (n=3,006) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Ponza et al.
(2004) | Dietary intake | 2002 FITS, usual intake | WIC and non-WIC infants and children ages 2-24 months (n=3,022) | Participant vs.
nonparticipant | N/A | Comparison of means and proportions (no statistical tests reported) | | See notes at end | of table. | | | | | Continued— | ### Appendix table 8—Studies that examined the impact of the WIC program on nutrition and health outcomes of infants and children—Continued | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |-------------------------------|--|--------------------------|---|-----------------------------------|--|--| | Siega-Riz et al.
(2004) | Dietary intake | 1994-96 and 1998 CSFII | WIC- and income-
eligible children
ages 2-5 who were
not enrolled in
school, in 2 income
groups: <130% of
poverty (n=1,772)
and 130-185% of
poverty (n=689) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression;
investigated but did not
implement correction for
selection bias | | Luman et al.
(2003) | Immunization status | 2000-01 NIS | WIC and non-WIC
children ages
19-35 months
(n=21,212) | Participant vs.
nonparticipant | Participation dummy, with non-WIC children divided by income eligibility and prior WIC participation: Ineligible, eligible and participated in the past, and eligible but never participated | Multivariate regression | | Shefer et al.
(2001) | Immunization status | 1999 NIS | WIC and non-WIC
children ages
24-35 months
(n=15,500) | Participant vs.
nonparticipant | Participation dummy, with non-WIC children divided by income and prior WIC participation: previously on WIC, never on WIC and income-eligible, and never on WIC and not income-eligible | Bivariate t-tests ⁴ | | Carlson and
Senauer (2003) | Physician-reported
general health
status | 1988-94 NHANES-III | Children ages 24-60 months (1) WIC sample: WIC and income- eligible (2) Full sample: WIC and non-WIC | Participant vs.
nonparticipant | Participation dummy | Ordered probit equations | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |---|--|------------------------------------|---|-----------------------------------|--------------------------|--| | Kranz and Siega-
Riz (2002) | Added sugar intake | 1994-96 CSFII | WIC and income-
eligible children
ages 2-5 (n=5,652) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Variyam (2002) | Dietary intake | 1994-96 and 1998 CSFII | WIC and income-
eligible children
ages 1-4 (n=2,509) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression; quantile regressions | | Burstein et al.
(2000) | Dietary intake,
height, weight, | 1988-94 NHANES-III
1993-95 SIPP | WIC and income-
eligible children | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | | nutritional
biochemistries,
immunization
status, general
health status, dental | 1995-97 CCDP | NHANES-III = 2,979
(12-59 months) | | | | | | | | SIPP = 1,302
(1-4 years) | | | | | | health, use of preventive health care, and physical, emotional, and cognitive development | | CCDP = 2,067
(2 years) | | | | | Kowaleski-Jones
and Duncan
(2000) | Motor skills, social
skills, and
temperament | NLSY, 1990-96 waves | (1) WIC and non-
WIC infants and
children (n=1,984) ⁵ | Participant vs.
nonparticipant | Participation dummy | (1) Multivariate regression
(2) Fixed-effects model | | | | | (2) WIC and non-WIC infants and children with at least 1 other sibling born during the same period (n=453 sibling pairs) ⁵ | | | | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |--|---------------------------------------|--------------------------|--|-----------------------------------|---|--| | Oliveira and
Gundersen
(2000) | Dietary intake | 1994-96 CSFII | WIC and income-
eligible children
ages 1-4 in
households where
at least 1 other
person also
participated in WIC
(n=180) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression ⁶ | | Kramer-LeBlanc
et al. (1999) | Dietary intake | 1988-94 NHANES-III | WIC and income-
eligible infants and
children ages 2
months-4 years
(n=6,636) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Rose et al. (1998) | Dietary intake | 1989-91 CSFII | WIC and non-WIC children ages 1-4 who were not breastfeeding and resided in FSP-eligible households (n=499) | Participant vs.
nonparticipant | Dose response:
Value of monthly
household per capita
WIC benefit | Multivariate regression;
investigated but did
not
implement adjustment for
selection bias | | Centers for
Disease Control
(1995) | Dietary intake,
height, and weight | 1988-91 NHANES-III | WIC and income-
eligible infants and
children ages 2-59
months (n=3,488) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression (height and weight) Comparison of means | | Rose et al. (1995) | Iron intake | 1989-91 CSFII | WIC and non-WIC children ages 1-4 who were not breastfeeding (n=800) | Participant vs.
nonparticipant | Participation dummy | (dietary intake) Multivariate regression | | Fraker et al.
(1990) | Dietary intake | 1985 CSFII | WIC and income-
eligible children
ages 1-4 (n=445) | Participant vs.
nonparticipant | Dose response: Proportion of 4 recall days on which child was enrolled in WIC; also tested for combined WIC and FSP participation | Multivariate regression with selection-bias adjustment | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |---------------------------------|--|---|---|-----------------------------------|---|---| | Group III: Seconda | ary analysis of State-le | evel files | | | | | | Lee et al. (2004a) | Number of dental visits per year and use of dental services (preventive, restorative, and emergency) | Longitudinal linked data
base, including birth,
Medicaid, WIC, and
Area Resource files for
children born in North
Carolina in 1992
(1993-97) | WIC and non-WIC
Medicaid recipients
ages 1-4
(n=49,795) | Participant vs.
nonparticipant | Dose-response:
Number of months any
WIC vouchers
redeemed | Multivariate regression
and ordered probit
analysis, including 2-stage
modeling to control for
selection bias | | Lee et al. (2004b) | Dental-care-related
Medicaid costs | Longitudinal linked data
base, including birth
record, Medicaid, WIC,
and Area Resource files
for children born in
North Carolina in 1992
(1992-96) | WIC and non-WIC
Medicaid recipients
ages 0-3
(n=49,795) | Participant vs.
nonparticipant | Participation dummy (any participation per year) | Multivariate regression | | Buescher et al.
(2003) | Health care
utilization and costs | Longitudinal linked data
base, including birth,
Medicaid, and WIC
records for children born
in North Carolina in
1992. Data base
includes data through
the 5 th birthday
(1992-97) | WIC and non-WIC
Medicaid recipients
ages 12-59 months
(n=16,335-21,277
for 4 age-specific
cohorts) | Participant vs.
nonparticipant | Dose response:
Cumulative WIC
participation defined as
none, high, medium,
and low ⁷ | Multivariate regression;
investigated but did not
implement selection-bias-
adjustment models | | Lee et al. (2000) | Prevalence of
anemia, failure to
thrive, nutritional
deficiencies, and
use of preventive
health care services | Longitudinal linked data
base, including birth
record, Medicaid,
AFDC/TANF, FSP, and
WIC files for all children
born in Illinois from 1990
through 1996 | WIC and non-WIC infants and children ages 0-59 months who received Medicaid benefits continuously | Participant vs.
nonparticipant | Participation dummy | Multivariate regression
and proportional hazards
models | | Partington and
Nitzke (1999) | Dietary intake | CSFII data for Midwest region (1994) ⁹ | WIC and income-
eligible children
ages 2-5 (n=183) | Participant vs.
nonparticipant | Participation dummy | Bivariate z-tests | | See notes at end of | table | | | | | Continued | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |-------------------------|--|---|--|--|--------------------------|---| | Sherry et al.
(2001) | Prevalence of anemia | PedNSS data for
Colorado, New Mexico,
Oklahoma, Utah, and
Vermont (early 1980s-
mid-1990s) (most data
provided by WIC
programs) | Infants and children
ages 6-59 months
(5,500-48,000
records per State
per year) | Prevalence
estimates for
each State in 5-
year intervals
overall and by
age, race/
ethnicity,
gender,
birthweight, and
type of
screening visit | N/A | Trends analysis | | Sherry et al.
(1997) | Prevalence of anemia | PedNSS data for
Vermont (1981-94)
(most data provided by
WIC programs) | Infants and children
ages 6-59 months
(n=12,000-19,500
records per year) | Prevalence
estimates for
each year for
overall sample
by age | N/A | Trends analysis | | Yip et al. (1987) | Prevalence of anemia | (1) PedNSS data for
Arizona, Kentucky,
Louisiana, Montana,
Oregon, and Tennessee
(1975-85) (Most data
provided by WIC
programs) | Infants and children
ages 6-60 months
(1) (n=499,759)
(2) (n=72,983) | (1) Overall and age-specific prevalence estimates for each year: Initial measures vs. followup measures | r | (1) Linear regression;angular chi-square(2) Multivariate regression | | | | (2) Linked PedNSS and
birth records for WIC
participants in
Tennessee PedNSS
database (1975-84) | | (2) Participant vs. nonparticipant | | | | USDA/FNS
(1978) | Hemoglobin,
hematocrit, height,
and weight | WIC records in PedNSS
data for Arizona,
Kentucky, Tennessee,
and Washington
(1974-76) | WIC infants and children ages 0-59 months with 3 or more WIC visits at approximately 6-month intervals (n=5,692) | Participants,
before vs. after | Participation dummy | Chi-square tests | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |--------------------------|--|---|--|-----------------------------------|--|--------------------------| | Group IV: Other St | tate and local studies | | | | | | | Black et al. (2004) | Height, weight,
caregiver-perceived
health status, and
household food
security | Primary data collection
at urban medical centers
in Washington, DC,
Baltimore, Minneapolis,
Boston, Little Rock, and
Los Angeles (1998-
2001) | WIC and income-
eligible infants
younger than 12
months (n=5,923) ¹¹ | Participant vs.
nonparticipant | Participation dummy, with non-WIC subjects divided into those who did not participate because of access issues and those who did not perceive a need for WIC | Multivariate regression | | Kahn et al. (2002) | Prevalence of anemia | Medical records for 3
WIC sites in Chicago
(1997-99) | WIC infants and children ages 6-59 months (n=7,053) | Participants,
before vs. after | Participation dummy | Not well described | | Shaheen et al.
(2000) | Immunization status | Primary data collection
(interviews and record
abstractions) in a
predominantly Hispanic
low-income area of Los
Angeles (dates not
reported) | WIC and non-WIC children ages 2-4 (n=270) | Participant vs.
nonparticipant | Participation dummy | Age-adjusted odds ratios | | James (1998) | Immunization status | Medical records for 1
health care center in Mt.
Vernon, NY | Randomly selected sample (matched on age and gender) of children who were up-to-date on immunizations at 12 months of age; equal size groups (n=150) | Participant vs.
nonparticipant | Participation dummy | Chi-square tests | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |----------------------------|--|--|--|--|--------------------------|--| | Burstein et al.
(1991) | Dietary
intake,
hemoglobin,
hematocrit, height,
weight, and head
circumference | Primary data collection
in Florida and North
Carolina (1990-91) | Random sample of WIC and income-
eligible infants (6 months old) stratified by birthweight (n=807) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression, including attempt to control for selection bias | | Brown and
Tieman (1986) | Dietary intake,
hemoglobin,
hematocrit, height,
and weight | Primary data collection in low-income areas of 1 county in Minnesota (dates not reported) | WIC and income-
eligible children
ages 1-5 (n=52) | Participant vs.
nonparticipant | Participation dummy | Chi-square test | | Smith et al.
(1986) | Hemoglobin | Medical records for 1
health center in Los
Angeles; initial and 6-
month followup
measures | Subset of random
sample of WIC and
non-WIC children
ages 1-4 who were
diagnosed with
anemia; matched
on age, gender,
and ethnicity (n=25
each group) | Participants vs.
nonparticipants,
before and after | Participation dummy | Analysis of variance | | Miller et al. (1985) | Serum ferritin,
hematocrit, and
hemoglobin | Medical records for 1
child and youth clinic in
Minneapolis (1973-74
and 1977) | WIC and income-
eligible children
ages 16-23 months
(n~2,225) | Participants,
before vs. after,
separate groups | Participation dummy | Chi-square tests | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |--------------------------------|---|--|---|--|--------------------------|---| | Vazquez-Seone
et al. (1985) | Hemoglobin | Medical records for
children enrolled in an
inner-city health center
in New Haven, CT,
before and after
initiation of WIC | WIC and income-
eligible infants and
children ages 9-36
months (n=583) | Participants,
before vs. after,
separate groups | Participation dummy | Bivariate t-tests | | Hicks and
Langham (1985) | IQ scores and
school grades | Primary data collection
and record abstractions
in 3 counties in rural
Louisiana (dates not
reported) | Sibling WIC pairs
ages 8-10; 1
"participated" in
WIC prenatally and
1 enrolled after age
1 (n=19 sibling
pairs) | Participant vs.
sibling control | Participation dummy | Multivariate regression | | Heimendinger et
al. (1984) | Expected weight gain ¹² | Medical records in 3
WIC and 4 non-WIC
clinics in the same
Boston neighborhoods
(1974-79) | WIC- and
Medicaid-eligible
infants and toddlers
up to 20 months
with at least 2
height and weight
measurements
(n=1,907) | Participant vs.
nonparticipant,
("value added"or
expected growth
vs. actual
growth) | Participation dummy | Multivariate regression of
"value-added" measures
by age group (3-month
intervals) | | Paige (1983) | Medicaid costs and
health care
utilization | Medicaid records in 4
counties in Maryland, 2
in which WIC was
available and 2 in which
WIC was not available
(1979-80) | WIC and income-
eligible infants ages
0-11 months who
were on Medicaid
for at least 75% of
study period
(n=138) | Participant vs.
nonparticipant | Participation dummy | Comparison of means and proportions (no statistical tests reported) | | Hicks et al. (1982) | Hemoglobin, height,
weight, and a
variety of intellectual
and behavioral
measures | Primary data collection
and record abstractions
in 3 rural counties in
Louisiana (dates not
reported) | Sibling WIC pairs
ages 6-8; 1
"participated" in
WIC prenatally and
1 enrolled after age
1 (n=21 sibling
pairs) | Participant vs.
sibling control | Participation dummy | Multivariate regression | | Study | Outcome(s) | Data source ¹ | Population (sample size) ² | Design | Measure of participation | Analysis method | |-------------------------|------------|---|---|-----------------------------------|--------------------------|-------------------| | Weiler et al.
(1979) | Hemoglobin | WIC records in 1 clinic
in Fayette Co, KY
(1976-77) | Infants ages 0-6
months initially
certified for WIC
because of anemia
who had followup
hemoglobin
measure available
(n=37) | Participants,
before vs. after | Participation dummy | Bivariate t-tests | Note: N/A = Not applicable. Data sources: CCDP = Comprehensive Child Development Programs. CSFII = Continuing Survey of Food Intakes by Individuals. FITS = Feeding Infants and Toddlers Study. NHANES-III = Third National Health and Nutrition Examination Survey. NIS = National Immunization Survey. NLSY = National Longitudinal Survey of Youth. PedNSS = Pediatric Nutrition Surveillance System. SIPP = Survey of Income and Program Participation. ²Unless the description of the study sample indicates that a comparison group was limited to nonparticipants who were income-eligible for WIC or known to be Medicaid participants, all income levels were included in the comparison group. Income was generally controlled for in the analysis. Definition of comparison group varies for different outcomes. Children who never participated in WIC were main comparison group and were compared with former and/or current WIC participants. Also estimated a multivariate model of the relationship between intensity of WIC immunization activities and immunization coverage rates for WIC participants. ³Roughly half of the sample was assessed in the first year of life and half was assessed between their first and second birthdays. Authors also ran regression for full sample of WIC and income-eligible children. That model resulted in more significant effects. WIC participation defined based on percentage of months from age 1 through current age in which WIC vouchers had been redeemed. High = more than 66 percent, Medium = 34-66 percent, and Low = 33 percent or less. To control for the fact that several outcomes under study might be reasons for WIC enrollment, WIC participation was coded as zero if diagnosis of a particular problem preceded the date of WIC enrollment. ³CSFII data included two recalls per subject, but authors used only the first recall. Used only data for 1994 because, at the time the study was conducted, only that portion of the 1994-96 data set had been coded for food group consumption. Maximum sample; sample size varies for each outcome. Information on income was not collected. Receipt of private health insurance was used as a proxy for income, and the non-WIC sample was limited to infants without private insurance. A doctoral dissertation completed by Heimendinger in 1981 included data on height and weight-for-height. However, these data were dropped from the peer-reviewed journal article because of substantial problems with missing data. # Appendix table 9—Studies that examined the impact of the WIC program on nutrition and health outcomes of nonbreastfeeding postpartum women, breastfeeding women, all WIC participants, or WIC households | Study | Outcome(s) | Data source ¹ | Population (sample size) | Design | Measure of participation | Analysis method | |---------------------------------|--|--|--|--|--------------------------|---| | Nonbreastfeeding | postpartum women | | | | | | | Pehrsson et al.
(2001) | Dietary iron intake,
several biochemical
indicators of iron
status | WIC sites in Maryland
with differing policies for
certifying low-risk
postpartum women
(1994-95) | Low-risk WIC and income-eligible postpartum (nonbreastfeeding) women (n=110) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests,
chi-square tests, and
analysis of variance | | Kramer-LeBlanc
et al. (1999) | Dietary intake | 1988-94 NHANES-III | WIC and income-
eligible postpartum
(nonbreastfeeding)
women (n=190) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Caan et al. (1987) | Birthweight, birth
length, weight
status, hemoglobin,
prevalence of
anemia | 47 local WIC agencies
in California (1983) | Pregnant WIC participants, some of whom had extended postpartum WIC participation for a previous pregnancy and some of whom had limited or no postpartum WIC participation (n=642) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Breastfeeding wor | nen | | | | | | | Kramer-LeBlanc
et al. (1999) | Dietary intake | 1988-94 NHANES-III | WIC and income-
eligible
breastfeeding
women (n=56) | Participant vs.
nonparticipant | Participation dummy | Bivariate t-tests | | Argeanas and
Harrill
(1979) | Dietary intake | 1 local WIC agency in
Colorado and 1
unaffiliated prenatal
clinic (1978) | WIC and non-WIC
breastfeeding
women (n=16) | Participant vs.
nonparticipant,
before and after | Participation dummy | Bivariate t-tests | | WIC households of | r all WIC participants | | | | | | | Wilde et al.
(2000) | Dietary intake | 1994-96 CSFII | Low-income
households
(n=1,901) | Participant vs.
nonparticipant | Participation dummy | Maximum likelihood estimation | ## Appendix table 9—Studies that examined the impact of the WIC program on nutrition and health outcomes of nonbreastfeeding postpartum women, breastfeeding women, all WIC participants, or WIC households—Continued | Study | Outcome(s) | Data source ¹ | Population (sample size) | Design | Measure of participation | Analysis method | |---------------------------|-------------------|--|--|-----------------------------------|--|-------------------------| | Basiotis et al.
(1998) | Dietary intake | 1989-91 CSFII | Low-income
households
(n=1,379) | Dose-response | Participation dummy;
benefit amount | Multivariate regression | | Arcia et al. (1990) | Food expenditures | NWE (1983-84) | Nationally representative sample of pregnant WIC participants and income-eligible nonparticipants receiving prenatal care in surrounding public health clinics and hospitals (n=3,935) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Taren et al.
(1990) | Food intake | Food cooperatives and
EFNEP programs in
Hillsborough Country,
Florida (dates not
reported) | Low-income
households
(n=157) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Rush et al.
(1988b) | Food expenditures | Primary data collection
(1983-84) | Nationally representative sample of pregnant WIC participants and income-eligible nonparticipants receiving prenatal care in surrounding public health clinics and hospitals (n=3,935) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | Data sources: CSFII = Continuing Survey of Food Intakes by Individuals. EFNEP = Expanded Food and Nutrition Education Program. NWE = National WIC Evaluation. NHANES-III = Third National Health and Nutrition Examination Survey. ### **National School Lunch Program** #### Appendix table 10—Studies that examined the impact of the National School Lunch Program on students' dietary intakes | • • | | | | | | | | |--------------------------------------|--|--|-------------------------------------|---|-----------------------------------|------------------------------|---| | Study | Outcome(s) | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | | Group I: Nation | nal evaluations | | | | | | | | Devaney
et al. (1993)
(SNDA-I) | Nutrient intake
at lunch and
over 24 hours | Nationally representative sample of | Single 24-hour
recall | Children and adolescents in grades 1-12 | Participant vs. nonparticipant | Ate NSLP lunch on recall day | Multivariate regression with selection-bias-adjustment (nutrients) | | | Food intake at lunch | students from
329 public and
private schools
(1991-92) | | (n~3,350) | | | Bivariate t-tests (foods) | | Wellisch et al.
(1983)
(NESNP) | Nutrient intake
at lunch and
over 24 hours | Nationally
representative
sample of
students from
276 public
schools
(1980-81) | Single 24-hour
recall | Children and
adolescents in
grades 1-12
(n=6,556) | Participant vs.
nonparticipant | Ate NSLP lunch on recall day | Multivariate regression | | Group II: Seco | ndary analysis of | national surveys | | | | | | | Gleason and
Suitor (2003) | Nutrient intake
at lunch and
over 24 hours | 1994-96 CSFII | 2 nonconsecutive
24-hour recalls | Children and adolescents ages 6-18 with 2 days of intake data (n=1,614) | Participant vs.
nonparticipant | Ate NSLP lunch on recall day | Multivariate regression with fixed-effects mode to control for selection bias | | Gleason and
Suitor (2001) | Nutrient intake
at lunch and
over 24 hours | 1994-96 CSFII | 2 nonconsecutive
24-hour recalls | Children and adolescents ages 6-18 with 1 | Participant vs.
nonparticipant | Ate NSLP lunch on recall day | Comparison of regression-adjusted means | | | Food intake at lunch and over 24 hours | | | or 2 school days
of intake data
(n=1,866) | | | | | Fraker (1987) | Nutrient intake
at lunch and
over 24 hours | 1980-81 NESNP | Single 24-hour
recall | Children and
adolescents in
grades 1-12
(n=6,556) | Participant vs.
nonparticipant | Ate NSLP lunch on recall day | Bivariate t-tests for full sample and low-income sample | #### Appendix table 10—Studies that examined the impact of the National School Lunch Program on students' dietary intakes—Continued | Study | Outcome(s) | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |---------------------------------|--|--|--|---|--|--|---| | Akin et al.
(1983a) | Nutrient intake
over 24 hours | 1977-78 NFCS | 24-hour recall plus
2-day food record | Children and adolescents ages 6-18 (n=1,554) | Participant vs.
nonparticipant ^{2,3} | Ratio of number of days ate school lunch to number of days of dietary data | Multivariate regression | | Akin et al.
(1983b) | Nutrient intake
over 24 hours | 1977-78 NFCS | 24-hour recall plus
2-day food record | Children and
adolescents
ages 6-18
(n=1,554) | Participant vs.
nonparticipant ⁴ | Ratio of number of days ate school lunch to number of days ate any lunch | Switching regression;
Chow tests | | Hoagland
(1980) | Nutrient intake
over 24 hours | 1971-74
NHANES-I | Single 24-hour
recall | Children and
adolescents
ages 6-21
(n=3,155) | Participant vs.
nonparticipant ² | Ate school lunch on recall day | Analysis of variance | | Group IIIA: Sta | ate and local stud | ies with large sam | oles | | | | | | Rainville
(2001) | Nutrient intake
at lunch
Food intake at
lunch | Students in 10
schools in
southeastern
Michigan (1998) | Visual observation of food selection and waste | Children in
grades 2-4
(n=570) | Participant vs.
nonparticipant | Ate school lunch on observation day (vs. sack lunch) | Analysis of variance | | Melnick et al.
(1998) | Food intake
over 24 hours | All students in randomly selected classrooms in 25 sampled public and private schools in New York City (1989-90) | Single 24-hour recall (nonquantitative) | Children in
grades 2 and 5
(n=1,397) | Participant vs.
nonparticipant ² | Ate school lunch on recall day | Gender-adjusted anlaysis
of covariance | | Wolfe and
Campbell
(1993) | Food intake
at lunch | Students in 51
schools in New
York State,
excluding New
York City
(1987-88) | Single 24-hour recall (nonquantitative) | Children in
grades 2 and 5
(n=1,797) | Participant vs.
nonparticipant | Ate school lunch on recall day | Bivariate t-tests and chi-square tests | #### Appendix table 10—Studies that examined the impact of the National School Lunch Program on students' dietary intakes—Continued | Study | Outcome(s) | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |--|--|--|--|---|--|--|--| | Price et al.
(1978) | Nutrient intake
over 24 hours | Students in
schools/districts
in 8 regions in
Washington
State, Blacks
and Mexican-
Americans were
oversampled
(1971-73) | 3 nonconsecutive
24-hour recalls,
including 1 weekend
day | Children ages
8-12 (n=728) | Participant vs.
nonparticipant | Participation
dummies based on
usual frequency:
0-1 time per week,
2-3 times per week,
4-5 times per week | Multivariate regression | | Emmons et al.
(1972) | Nutrient intake
at lunch and
over 24 hours | All students in
selected grades
in 1 district in
rural New York
State (1970-71) ⁵ | Single 24-hour recall | Children in
grades 1-4
(n=512) | Participants,
before vs. after ⁶ | Took 70% or more
of school
meals
offered during study
period | Comparison of means (type of statistical test not reported) | | U.S. Department of Health, Education, and Welfare (HEW) (10- State Nutrition Survey) | Nutrient intake
over 24 hours | Sample of
children from 10
States, plus
volunteers
(1972) | Single 24-hour
recall | Children and adolescents ages 10-16 (n=8,495) | Participant vs.
nonparticipant ² | Usually ate school
lunch at least
3 times/week | Comparison of means
(no statistical tests
reported) | | Group IIIB: Sta | te and local studi | ies with small samp | oles | | | | | | Cullen et al.
(2000) | Food intake at lunch | Students in 1
middle school in
Texas (dates not
reported) | 5 consecutive daily food records | Children in
grade 5 (n=282) | Participant vs.
nonparticipant | Ate NSLP lunch (vs. home lunch or snack bar lunch) on food record days | Analysis of variance | | Ho et al.
(1991) | Nutrient intake
at lunch | Students in 1
middle school in
Salt Lake City
(1989) | Visual observation of food selection and waste | Children and
adolescents in
grades 7 and 8
(n=254) | Participant vs.
nonparticipant | Ate NSLP lunch (vs. sack lunch or vending machine lunch) on observation day | Analysis of variance and
Student-Newman-Keuls
range test | | Perry et al.
(1984) | Nutrient intake
at lunch | All students in
selected
classrooms in 3
schools in 1
district in
Alabama | 3-day food record | Children in
grades 5 and 6
(n=233) | Participant vs.
nonparticipant ⁷ | Ate NSLP lunch (vs.
brown bag lunch) on
food record days | Unmatched t-test | #### Appendix table 10—Studies that examined the impact of the National School Lunch Program on students' dietary intakes—Continued | Study | Outcome(s) | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |-------------------------------------|--|---|-----------------------------|---|-----------------------------------|---|----------------------------| | Howe and
Vaden (1980) | Nutrient intake
at lunch and
over 24 hours | Randomly
selected
students in 1
urban public
high school in
Kansas | Single 24-hour
recall | Adolescents in grades 10 and 11 (n=104) | Participant vs.
nonparticipant | Ate NSLP lunch on recall day | 2-way analysis of variance | | Yperman and
Vermeersch
(1979) | Food intake
over 24 hours | All students in 2
classrooms per
grade in 2
schools in
California | Food frequency
checklist | Children in
grades 1-3
(n=307) | Participant vs.
nonparticipant | Number of days ate
school lunch on 5
days prior to data
collection | Multivariate regression | Data sources: CSFII = Continuing Survey of Food Intakes by Individuals. NHANES-I = First National Health and Nutrition Examination Survey. NFCS = Nationwide Food Consumption Survey. Did not differentiate NLSP and other lunch programs. Included lunch skippers with nonparticipants. Accounted for lunch skippers. Study included a second district where both free lunch and free breakfast were offered. The two districts were considered separately in the analysis, but the analysis of the second district did not separate contributions of breakfast and lunch meals. ⁶Study compared intakes before and after introduction of a free lunch program. Results were reported for four different subgroups based on baseline characteristics: nutritionally adequate, nutritionally needy, low-income (eligible for free lunch), and not low-income. Unit of analysis was lunches rather than students; 60 percent of students ate NSLP daily. #### Appendix table 11—Studies that examined the impact of the National School Lunch Program on other nutrition and health outcomes | Study | Data source ¹ | Population (sample size) | Design | Measure of participation | Analysis method | |---|---|--|--|---|---| | Weight and/or height | | | | | | | Jones et al. (2003) | 1997 PSID, Child
Development
Supplement | Children ages 5-12 with household incomes ≤185% of poverty (n=772) | Participant vs.
nonparticipant | Parent report that child
"participates" | Multivariate regression | | Wolfe et al. (1994) | Students in 51 schools in
New York State,
excluding New York City
(1987-88) | Children in grades 2 and 5 (n=1,797) | Participant vs.
nonparticipant | Parent report that "child eats school lunch" | Multivariate regression | | Wellisch et al. (1983)
(NESNP) | Nationally representative
sample of students from
276 public schools
(1980-81) | Children and adolescents in grades 1-12 (n=6,556) | Participant vs.
nonparticipant | Average long-term weekly participation | Multivariate regression | | Gretzen and
Vermeersch (1980) ² | All students in 2 intervention programs and 2 comparison programs in 1 SFA in California | Children and adolescents in grades 1-8 (n=332) | Participant vs.
nonparticipant | Began receiving free
school lunch in grade 1
and regularly through
grade 8 | Analysis of variance;
bivariate t-tests | | Emmons et al. (1972) | All students in selected
grades in 1 district in
rural New York State
(1970-71) ³ | Children in grades 1-4
(n=844) | Participants, before vs. after | Took 70% or more of school meals offered during study period | Comparison of means (type of statistical test not reported) | | Paige (1972) | Students in 4 schools in Baltimore, MD | Children in grades 1, 2, and 6 (n=742) | Participant vs.
nonparticipant, before
and after | Not reported | Comparison of means (type of statistical test not reported) | | Nutritional biochemistr | ies | | | | | | Kandiah and
Peterson (2001) | Students in 1 school in Indiana | Children/adolescents
ages 11-15 (n=3,155) | Participants, before vs. after (cholesterol) | Ate school lunch at least 3 times per week | Multivariate regression | | Hoagland (1980) | 1971-74 NHANES-I | Children and
adolescents ages 6-21
(n=3,155) | Participant vs.
nonparticipant ⁵ (iron,
cholesterol, protein) | Ate school lunch on recall day | Linear regression | | See notes at end of table | | | | | Continued— | Appendix table 11—Studies that examined the impact of the National School Lunch Program on other nutrition and health outcomes—Continued | Study | Data source ¹ | Population (sample size) | Design | Measure of participation | Analysis method | |-----------------------------------|--|---|---|---|---| | Emmons et al. (1972) | All students in 2 selected
grades in 1 district in
rural New York State
(1970-71) ³ | Children in grades 1-4
(n=844) | Participants, before vs. after (iron) | Took 70% or more school meals offered during study period ⁴ | Comparison of means (type of statistical test not reported) | | Paige (1972) | Students in 4 schools in Baltimore, MD | Children in grades 1, 2, and 6 (n=742) | Participants vs.
nonparticipants, before
and after (iron) | Not reported | Comparison of means (type of statistical test not reported) | | Household food expend | ditures | | | | | | Long (1991) | 1980-81 NESNP | Children and adolescents in grades 1-12 (n=5,778) | Participant vs.
nonparticipant | Any household member participates in NSLP at least once during a typical week | Multivariate regression with selection-bias adjustment ⁶ | | Wellisch et al. (1983)
(NESNP) | Nationally representative
sample of students in
276 public schools
(1980-81) | Children and adolescents in grades 1-12 (n=6,556) | Participant vs.
nonparticipant | Current weekly NSLP participation | Multivariate regression | | West and Price (1976) | Students in schools/
districts in 8 regions in
Washington State;
Blacks and Mexican-
Americans were
oversampled (1972-73) | Children ages 8-12
(n=992) | Participant vs.
nonparticipant | Value of free school
lunches (dollars per
month) | Multivariate regression.
Separate models for
Blacks, Whites, Mexican-
Americans. | Data sources: NESNP = National Evaluation of School Nutrition Programs. NHANES-I = First National Health and Nutrition Examination Survey. PSID = Panel Study of Income Dynamics, Child Development Supplement. Study also examined physical fitness, school attendance, and academic performance. Study included a second district where both free lunch and free breakfast were offered. The two districts were considered separately in the analysis, but the analysis of the second district did not separate contributions of breakfast and lunch meals. ⁴Study compared intakes before and after introduction of a free lunch program. Results reported for four different subgroups based on baseline characteristics: nutritionally adequate, nutritionally needy, low-income (eligible for free lunch), and not low-income. Did not differentiate NLSP and other lunch programs. ⁶Participation
measure not same week as expenditure measure; included NSLP and SBP in expenditures. ### **School Breakfast Program** #### Appendix table 12—Studies that examined the impact of the School Breakfast Program on students' dietary intakes | Study | Outcome(s) | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |--|--|---|-------------------------------------|---|-----------------------------------|--|---| | Group I: Nation | nal evaluations | | | | | | | | Devaney and
Stuart (1998)
(SNDA-I) | Likelihood
of eating
breakfast | Nationally
representative
sample of
students from
329 public and
private schools | Single 24-hour
recall | Children and
adolescents in
grades 1-12
(n=2,966) | Participant vs.
nonparticipant | Ate SBP breakfast
on recall day | Multivariate regression with selection-bias adjustment | | Gordon et al.
(1995)
(SNDA-I) | Nutrient intake
at breakfast
and over 24
hours
Food intake at
breakfast | Nationally
representative
sample of
students from
329 public and
private schools | Single 24-hour
recall | Children and
adolescents in
grades 1-12
(n=2,966) | Participant vs.
nonparticipant | Ate SBP breakfast
on recall day | Multivariate regression
with selection-bias
adjustment (nutrients)
Bivariate t-tests (foods) | | Wellisch et al.
(1983)
(NESNP) | Nutrient intake
at breakfast
and over 24
hours ² | Nationally
representative
sample of
students from
276 public
schools | Single 24-hour
recall | Children and
adolescents in
grades 1-12
(n=2,180) | Participant vs.
nonparticipant | Ate SBP breakfast
and NSLP lunch on
recall day (nonparti-
cipants ate NSLP
lunch only) | Multivariate regression | | Group II: Seco | ndary analysis of | national surveys | | | | | | | Gleason and
Suitor (2001) | Nutrient intake
at breakfast
and over 24
hours
Food intake at | 1994-96 CSFII | 2 nonconsecutive
24-hour recalls | Children and
adolescents in
SBP schools
ages 6-18
(n=2,693) | Participant vs.
nonparticipant | Ate SBP breakfast
on recall day | Comparison of regression-adjusted means | | | breakfast and over 24 hours | | | | | | | | Basiotis et al.
(1999) | Nutrient intake
over 24 hours | 1994-96 CSFII | 2 nonconsecutive
24-hour recalls | Low-income children ages | Participant vs. nonparticipant | Ate SBP breakfast on recall day | Multivariate regression | | | Food intake over 24 hours | | | 6-18 (sample size not reported) | | | | | Devaney and
Fraker (1989) | Nutrient intake
at breakfast
and over 24
hours | 1980-81 NESNP | Single 24-hour recall | Children ages
5-10 (n=2,118)
and 11-21
(n=2,809) | Participant vs. nonparticipant | Ate SBP breakfast on recall day | Multivariate regression | Appendix table 12—Studies that examined the impact of the School Breakfast Program on students' dietary intakes—Continued | Study | Outcome(s) | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |---------------------------|--|--|--|--|--|---|---| | Hoagland
(1980) | Nutrient intake
over 24 hours ² | 1971-74
HANES-I | Single 24-hour
recall | Children and adolescents ages 6-21 (n=412) | Participant vs.
nonparticipant | Ate school breakfast on recall day | Analysis of variance | | Group III: State | and local studie | s | | | | | | | Nicklas et al.
(1993a) | Nutrient intake
at breakfast | Bogalusa Heart
Study (1984-85
and 1987-88) | Single 24-hour
recall | Children age 10 (n=393) | Participant vs.
nonparticipant | Ate school breakfast on recall day | Analysis of variance | | Nicklas et al.
(1993b) | Nutrient intake
over 24 hours | Bogalusa Heart
Study (1984-85
and 1987-88) | Single 24-hour
recall | Children age 10 (n=393) | Participant vs.
nonparticipant | Ate school breakfast on recall day | Analysis of variance | | Emmons et al.
(1972) | Nutrient intake
at breakfast
and over 24
hours ² | All students in 2
school districts
in rural New
York State
(1970-71) | Single 24-hour
recall | Children in
grades 1-4
(n=844) | Participants,
before vs. after ⁴ | Took 70% or more of school meals offered during study period | Comparison of means (type of statistical test not reported) | | Hunt et al.
(1979) | Nutrient intake
over 24 hours | 2 schools in
Compton, CA
(1970-71) | Single 24-hour
recall | Children in
grades 3-6
(n=555) | Participant vs.
nonparticipant ⁵ | 60% participation in SBP on days in school during experimental period | Analysis of variance | | Price et al.
(1978) | Nutrient intake
over 24 hours | Students in
schools/districts
in 8 regions in
Washington
State; Blacks
and Mexican-
Americans were
oversampled
(1971-73) | 3 nonconsecutive
24-hour recalls,
including 1 weekend
day | Children ages
8-12 (n=728) ⁶ | Participant vs.
nonparticipant | Usually ate school
breakfast 4-5
times/week | Multivariate regression | #### Appendix table 12—Studies that examined the impact of the School Breakfast Program on students' dietary intakes—Continued | Study | Outcome(s) | Data source ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | | | | |---|---|--|--|--|-----------------------------------|---|---|--|--|--| | Group IV: Studies of universal-free breakfast | | | | | | | | | | | | McLaughlin et al. (2002) | Nutrient intake
at breakfast
and over 24
hours | 70 matched pairs of school units in 6 school districts | 24-hour recall, with
second recall for
subsample (usual
intake) | Children in
grades 2-6
(n=4,290) | Randomized experiment | Ate universal-free
breakfast on recall
day ⁹ | Multivariate regression
with Bloom correction to
assess impact on
universal-free oreakfast | | | | | | Food intake at breakfast and over 24 hours 2,7 | | | | | | participants (subgroup analyses) | | | | | Cook et al.
(1996) | Nutrient intake
at breakfast | Elementary
schools in
Central Falls, RI,
matched with
schools in
Providence, RI | Single breakfast recall | Children in
grades 3-6
(n=225) | Participant vs.
nonparticipant | Ate SBP breakfast
on recall day | Not well described. | | | | ¹Data sources: CSFII = Continuing Survey of Food Intake of Individuals. NHANES-I = First National Health and Nutrition Examination Survey. NESNP = National Evaluation of School Nutrition Programs. ² Also examined impacts on height and/or weight, but reported no significant findings. The study compared SBP participants with students who did not have access to the SBP. Only three SBP participants were included in the sample. ⁴Study compared intakes before and after introduction of free lunch (one district) and free lunch and breakfast (one district). Results reported for four different subgroups based on baseline characteristics: nutritionally adequate, nutritionally needy, low-income (eligible for free lunch), not low income. Study examined the effect of introducing a free breakfast program, comparing students in experimental school to control school that had no breakfast program. School breakfast was not the main focus of the study. Only 20 children in the sample consumed a school breakfast. The study also examined impacts on BMI and food security and found no significant effects. The study also examined impacts on similar local section, and results in grades 2-6. For sampling/matching purposes, schools with different grade configurations (e.g., K-2 and 3-5) were considered one unit. There were a total of 73 treatment schools and 70 control schools. The study's main analysis compared outcomes for the entire treatment group with outcomes for the entire control group. Findings discussed in this report, however, are from a separate analysis that estimated impacts on students who actually participated in universal-free breakfast on the day of the recall. #### Appendix table 13—Studies that examined the impact of universal-free breakfast programs on school performance and behavioral/cognitive outcomes | Study | Outcomes | Data source | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |-----------------------------
--|---|---|--|--|---|--| | Peterson et al.
(2003) | Attendance,
academic
achievement,
health, and
discipline | 455 schools in
Minnesota
(1998-2002) | School records and standardized test scores | All children for
attendance
measures;
children in
grades 3 and 5
for academic
measures
(n=43,067) | Participant vs.
nonparticipant | Enrolled in
universal-free
SBP school | Logistic regression | | McLaughlin et
al. (2002) | Cognitive functioning, attendance, tardiness, behavior academic | 70 matched pairs of school units in 6 school districts (1999-2001) ² | School records and standardized test scores | Children in
grades 2-6
(n=4,290) | Randomized experiment | Ate universal-free
breakfast on day of
measurement
(short-term
cognitive
functioning) ³ | Multivariate regression with Bloom correction to asses impact on universal-free breakfast participants (subgroup analysis) | | | achievement,
student health
status | | | | | Cumulative participation in universal-free breakfast over the year (all other measures) | | | Murphy et al.
(2001a) | Attendance
and academic
achievement | 48 schools in
Baltimore (1995-
2000) | School records and standardized test scores | All children in
sample schools
(n=not stated) | Participants,
before vs. after,
separate
groups, plus
participants vs.
nonparticipants,
before and after | Enrolled in
universal-free
SBP school | Analysis of variance | #### Appendix table 13—Studies that examined the impact of universal-free breakfast programs on school performance and behavioral/cognitive outcomes—Continued | Study | Outcomes | Data source | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |--------------------------------------|---|--|--|---|--|---|--| | Murphy et al.
(2001b) | Attendance,
tardiness,
academic
achievement | 55 schools in
Maryland
(1997-2000) | School records and standardized test scores | Varied by outcome for both schools and students | Participants,
before vs. after,
separate
groups, plus
participants vs.
nonparticipants,
before and after | Enrolled in
universal-free
SBP school | Analysis of variance;
bivariate t-tests | | Murphy et al.
(2000) | Attendance,
tardiness,
academic
achievement,
emotional
functioning | 30 schools in
Boston, MA
(1998-2000) | School records,
standardized test
scores, parent and
student interviews | All children in
sample schools
(n=not stated) | Participants,
before vs. after | Frequency of eating breakfast during 1 index week | Analysis of variance | | Murphy et al.
(1998) | Attendance,
psychological
measures,
academic
achievement | 1 school in Baltimore; 2 schools in Philadelphia (dates not reported) | School records and parent, teacher, and student interviews | Children in
grades 3-8
(n=133) ⁴ | Participants,
before vs. after | Frequency of eating breakfast during 1 index week | Logistic regression | | Cook et al.
(1996) | Attendance,
tardiness | All elementary
schools in
Central Falls, RI,
matched with
schools in
Providence, RI
(1994) | School records | Children in
grades Pre-K-6
(n=not reported) | Participant vs.
nonparticipant | Enrolled in
universal-free
SBP school | Not well described | | Meyers et al.
(1989) ⁵ | Attendance,
tardiness,
academic
achievement | 16 schools in
Lawrence, MA
(1985-87) | School records and standardized test scores | Children in
grades 3-6
(n=1,023) | Participant vs.
nonparticipant | Ate SBP on 3 of 5
days during 1
selected week
during school year | Multivariate regression | ¹The study also examined impacts of BMI and food security and found no effects. ²The study focused on students in grades 2-6. For sampling/matching purposes, schools with different grade configurations (e.g., K-2 and 3-5) were considered as one school unit. There were a total of 73 treatment schools and 70 control schools. The study's main analysis compared outcomes for the entire treatment group with outcomes from the entire control group. Findings discussed in this report, however, are from a separate analysis that estimated impacts based on students' actual participation in universal-free breakfast. Impacts on short-term outcomes were estimated on the basis of participation on the day of measurement and impacts on longer term outcomes were estimated on the basis of cumulative participation over the year. For school-recorded data (maximum sample). Sample sizes varied for interview data (n=85) and teacher ratings (n=76). The Meyers et al. study (1989) was not a study of universal-free breakfast. The study compared outcomes in schools that did and did not implement the SBP. ## Nutrition Services Incentive Program (formerly the Nutrition Program for the Elderly Note: This research actually focused on the Elderly Nutrition Program (ENP), which is sponsored by the U.S. Department of Health and Human Services. USDA's Nutrition Program for the Elderly (NPE), now known as the Nutrition Services Incentive Program, provided supplemental commodities to ENP delivery sites, based on a per meal reimbursement rate. Appendix table 14—Studies that examined the impact of the Elderly Nutrition Program on nutrition and health outcomes | Study | Outcome(s) | Data sources ¹ | Data collection
method | Population (sample size) | Design | Measure of participation | Analysis method | |---|---|--|--|--------------------------------------|--|---|--| | Group I: Nation | al evaluations | | | | | | | | Ponza et al.
(1996)
(National
Evaluation of
the ENP—
1993-95) | Dietary intake
and social
contacts | Random sample of ENP participants (both congregate and home-delivered) and random sample of nonparticipants selected from HCFA Medicare beneficiary file (1993-95) | 24-hour dietary
recall and in-person
interview | ENP-eligible
elderly
(n=2,699) | Participant vs.
nonparticipant | Received ENP meal
on dietary recall day
(did not necessarily
consume it) | Multivariate regression;
attempted to control for
selection bias | | Kirschner and
Associates
and Opinion
Research
Corporation -
Wave II (1983) | Dietary intake
and
socialization | Participants in 70 randomly selected ENP sites (both congregate and home-delivered), random sample of participants' neighbors, and former participants (1976-77) | 24-hour dietary
recall and isolation
index | ENP-eligible
elderly
(n=3,411) | Participant vs.
nonparticipant
and compari-
sons to Wave I
participants still
enrolled in
congregate sites | Ate ENP meal on dietary recall day | Chi-square tests | | Kirschner and
Associates
and Opinion
Research
Corporation -
Wave I (1979) | Dietary intake
and
socialization | Participants in 91 randomly selected ENP sites (congregate only) and random sample of participants' neighbors (1982) | 24-hour dietary
recall and isolation
index | ENP-eligible
elderly
(n=4,563) | Participant vs.
nonparticipant | Ate ENP meal on dietary recall day | No statistical tests
conducted | | Group IIA: State | | es of congregate m | | | | | | | Gilbride et al.
(1998) | Dietary intake
and nutritional
risk | Residents in HUD elderly housing facilities in metropolitan New York City; nonparticipants from facilities that did not have ENP (dates not reported | 2 24-hour dietary
recalls, food
frequency, 5-day
food records, and
level-one screen
from Nutrition
Screening Initiative
checklist | ENP-eligible
elderly (n=40) | Participant vs.
nonparticipant | Currently receiving ENP meals | No statistical tests conducted | #### Appendix table 14—Studies that examined the impact of the Elderly Nutrition Program on nutrition and health outcomes—Continued | Study | Outcome(s) | Data sources ¹ | Data collection method |
Population (sample size) | Design | Measure of participation | Analysis method | |------------------------------------|--|---|---|--|-----------------------------------|---|--| | Neyman et al.
(1996) | Dietary intake,
weight status,
nutritional
biochemsitries | Participants and nonparticipants at 9 ENP sites in 2 northern California counties (dates not reported) | 3-day food record,
venous blood
sample, height and
weight | ENP-eligible
elderly (n=135) | Participant vs.
nonparticipant | Ate ENP meal on
at least 1 food
record day | Multifactorial analysis of variance | | Czajka-Narins
et al. (1987) | Dietary intake,
weight status,
and nutritional
biochemistries | Participants in 6 ENP sites in Missouri; nonparticipants from senior center that did not serve meals (dates not reported) | 1-day food record,
24-hour recall, food
frequency, venous
blood sample,
height, weight, and
tricep skinfolds | ENP-eligible
elderly, over 75
years old
(n=185) | Participant vs.
nonparticipant | Regular participation: Ate at ENP meal site 2-5 times per week Irregular participation: Ate at ENP site less than twice per week, but at least once per week during last 4 months | Chi-square tests and analysis of variance | | LeClerc and
Thornbury
(1983) | Dietary intake | Participants in 1 ENP site in central Maine; nonparticipants from federally- subsidized housing units in same area (dates not reported) | 3-day food records | ENP-eligible,
low-income
elderly (n=53) | Participant vs.
nonparticipant | Ate ENP meal 3-5
times per week | Bivariate t-tests and analysis of variance | | Nordstrom et
al. (1982) | Iron intake and iron status | Participants in 6
ENP sites in
Missouri;
nonparticipants
from senior center
that did not serve
meals (1975) | 1-day food record
and venous blood
sample | ENP-eligible
elderly (n=320) | Participant vs.
nonparticipant | Ate ENP meal on food record day | Analysis of variance | #### Appendix table 14—Studies that examined the impact of the Elderly Nutrition Program on nutrition and health outcomes—Continued | Study | Outcome(s) | Data sources ¹ | Data collection
method | Population (sample size) | Design | Measure of participation | Analysis method | |----------------------------|--|--|---|---|-----------------------------------|---|---| | Kohrs et al.
(1980) | Dietary intake,
weight status,
and nutritional
biochemistries | Participants in 6
ENP sites in
Missouri;
nonparticipants
from senior
center that did
not serve meals
(1975) | 1-day food record,
24-hour recall, food
frequency, venous
blood sample,
height, weight, and
tricep skinfolds | ENP-eligible
elderly (n=547) | Participant vs.
nonparticipant | Regular participation: Ate at ENP meal site 2-5 times per week Irregular participation: Ate at ENP site less than twice per week, but at least once per week during last 4 months | Chi-square tests and analysis of variance | | Singleton et al.
(1980) | Dietary intake | Participants in 7 ENP sites in southern Louisiana; nonparticipants from 2 senior centers that did not serve meals (dates not reported) | 24-hour dietary
recall | ENP-eligible,
low-income
elderly females
(n=97) | Participant vs.
nonparticipant | Ate ENP meal on dietary recall day | Analysis of variance | | Kohrs et al.
(1978) | Dietary intake | Participants in 6 ENP sites in Missouri; nonparticipants from senior center that did not serve meals (1973) | 1-day food record | ENP-eligible
elderly (n=466) | Participant vs.
nonparticipant | Ate ENP meal on food record day | Analysis of variance | | Group IIB: Stat | e and local studi | es of home-deliver | | | | | | | Edwards et al. (1998) | Food security,
diet diversity,
and diabetic
control | Random sample of diabetic recipients of homedelivered meals in New York State and random sample of nonparticipants from a waiting list (1986-87) | In-person interview
and mail survey of
respondents'
physicians | ENP-eligible,
homebound
diabetic elderly
(n=154) | Participant vs.
nonparticipant | Currently receiving
ENP meals at least
2 times per week | Multivariate regression | #### Appendix table 14—Studies that examined the impact of the Elderly Nutrition Program on nutrition and health outcomes—Continued | Study | Outcome(s) | Data sources ¹ | Data collection method | Population (sample size) | Design | Measure of participation | Analysis method | |----------------------------|--|---|---|---|-----------------------------------|--|---| | Ho-Sang
(1989) | Dietary intake
and weight
status | Recipients of home-delivered meals in New York State; nonparticipants from waiting lists for other programs (dates not reported) | 24-hour dietary
recall, height,
weight, and tricep
skinfolds | ENP-eligible,
homebound
elderly (n=448) | Participant vs.
nonparticipant | Currently receiving ENP meals | Bivariate t-tests and multivariate regression | | Steele and
Bryan (1986) | Dietary intake | Recipients of
home-delivered
meals from 1 site
in North Carolina;
nonparticipants
from a waiting
list (1982-83) | 24-hour dietary
recall and diet
history | ENP-eligible,
homebound
elderly (n=54) | Participant vs.
nonparticipant | Currently receiving
1 ENP meal per
day, 5 days per
week | Bivariate t-tests | All studies were primary data collection efforts. Nutrition Assistance Program in Puerto Rico, American Samoa, and the Northern Marianas ### Appendix table 15—Studies that examined the impact of the Nutrition Assistance Program in Puerto Rico on household food expenditures and/or nutrient availability | Study | Outcome(s) | Data source ¹ | Population (sample size) | Design | Measure of participation | Analysis method | |--------------------------|--|--|--|--|--|---| | Bishop al. (1996) | Household nutrient availability | 1977 Puerto Rico
supplement to the
NFCS and 1984 Puerto
Rico HFCS | Participant and income-eligible nonparticipant households using 1977 eligibility criteria (n= 3,995) | Pre-cashout
compared with
cashout (1977
vs. 1984) | Participation dummy | Stochastic dominance | | Hama (1993) | Household food
expenditures
Household nutrient
availability | 1984 Puerto Rico HFCS | Participant and nonparticipant (including ineligible) households (n=1,559) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Beebout et al.
(1985) | Household food
expenditures
Household nutrient
availability | 1977 Puerto Rico
supplement to the
NFCS and 1984 Puerto
Rico HFCS | Participant and income-eligible nonparticipant households using 1977 eligibility criteria (n= 3,995) | Pre-cashout
compared with
cashout (1977
vs. 1984) | Group membership
dummy, participation
dummy, and benefit
amount | Multivariate regression,
with 2-equation selection-
bias models | Data sources: NFCS = Nationwide Food Consumption Survey. HFCS = Household Food Consumption Survey. ### Appendix table 16—Studies that examined the impact of the Commodity Supplemental Food Program on nutrition and health outcomes of low-income pregnant women and young children | Study | Outcome(s) | Data source | Population (sample size) | Design | Measure of participation | Analysis method | |--------------------------------|---|--|--|-----------------------------------
---|---| | Mahony-Monrad
et al. (1982) | Women: hemoglobin, hematocrit, pregnancy weight gain, birthweight, gestational age, APGAR score, length of newborn hospital stay Children: hemoglobin, hematocrit, height, weight, immunization status | 2 CSFP sites in Memphis and 1 in Detroit (CSFP participants) and area hospital/health department clinics (nonparticipants) (1978-80) | Matched pairs of
pregnant women
(n=421 pairs) and
children (n=236
pairs) | Participant vs.
nonparticipant | Participation dummy: Received food from CSFP during study period Dose-response: Number of pickups, number of prenatal care visits, and percentage of recommended prenatal visits | t-tests, analysis of covariance, correlations | Women were matched on age, race, number of previous pregnancies, smoking status, marital status, and prepregnancy weight. Children were matched on gender, race, and birthweight. **WIC Farmers' Market Nutrition Program** # Appendix table 17—Studies that examined the impact of the WIC Farmers' Market Nutrition Program on self-reported fruit and vegetable consumption | Study | Outcome(s) | Data source | Population (sample size) | Design | Measure of participation | Analysis method | |----------------|---|---|--|--|--|------------------------| | Anliker (1992) | Self-reported fruit
and vegetable
consumption | Randomly selected WIC participants in 6 sites that participated in FMNP and 3 sites that did not (1989) | FMNP participants
(n=172)
Nonparticipants
(n=44) | Participants vs.
nonparticipants,
before and after | Received coupons | Analysis of covariance | | Galfond (1991) | Self-reported fruit
and vegetable
consumption | Randomly selected WIC participants in 6 States (1990) | FMNP coupon
recipient (n=1,503)
FMNP nonrecipients
(n=1,126)
Recipients in prior
but not current
season (n=96) | Participant vs.
nonparticipant | Received coupons in current growing season | Bivariate t-tests | Special Milk Program #### Appendix table 18—Studies that examined the impact of the Special Milk Program on children's milk consumption | Study | Outcome(s) | Data source | Population (sample size) | Design | Measure of participation | Analysis method | |---------------------------|--------------------------------|--|--------------------------------------|-----------------------------------|--------------------------|---| | Wellisch et al.
(1983) | Dietary intake | Nationally representative
sample of 90 school
districts and 276 schools
across the country
(1980-81) | Children in grades
1-12 (n=6,566) | Participant vs.
nonparticipant | Participation dummy | Multivariate regression | | Robinson (1975) | Self-reported milk consumption | Nationally representative
sample of 768 schools
(1975) | School-age
children (n=20,000) | Participant vs.
nonparticipant | Participation dummy | Comparison of means and proportions (no statistical tests reported) | # Team Nutrition Initiative and Nutrition Education and Training Program ## Appendix table 19—Studies that examined the impact of the Team Nutrition Initiative or the Nutrition Education and Training Program on school-age children | Study | Outcome(s) | Data source | Population (sample size) | Design | Measure of participation | Analysis method | |----------------------------------|--|--|--|--|--------------------------|---| | USDA, 1998 | Nutrition-related
knowledge,
attitudes, self-
reported and
observed eating
behaviors | 4 purposefully selected
school districts; 24
schools (1996) | Children in 4 th grade (n=144) | Participant vs.
nonparticipant,
before and after | Participation dummy | Multivariate regression | | Shannon and
Chen (1988) | Nutrition-related
knowledge,
attitudes, and self-
reported eating
behaviors | 12 school districts and
35 schools across
Pennsylvania
(dates not reported) | Children in grades
3-5 (n=1,707 3 rd
graders in initial
sample) | Participants,
before and after
(sequential
nutrition
education
program that
spanned 3
school years) | Participation dummy | Analysis of covariance | | Banta et al,
(1984) | Plate waste,
nutrition-related
knowledge,
attitudes, and self-
reported eating
behaviors | 48 schools across
Tennessee (dates not
reported) | Plate waste:
Children in grades
K-6 (n=1,462)
All other outcomes:
Children in grades
K-12 (n=862) | Participant vs.
nonparticipant,
before and after | Participation dummy | Not described | | Gillespie (1984) | Nutrition-related
knowledge,
attitudes, and
snacking behaviors | 6 elementary schools in
central New York State
(1979-80) | Children in grades
K-6 (n=1,157) | Participant vs.
nonparticipant,
before and after | Participation dummy | Bivariate t-tests, chi-square
tests, and Wilcoxon
signed ranks tests | | St. Pierre and
Glotzer (1981) | Nutrition-related
knowledge,
attitudes,
preferences, and
self-reported eating
behaviors | 7 school districts across
Georgia (1980) | Children in grades
1-8 (n=1,400) | Participant vs.
nonparticipant | Participation dummy | Analysis of covariance,
using both children and
classrooms as the unit of
analysis | | St. Pierre et al.
(1981) | Nutrition-related
knowledge, attitudes,
preferences, self-
reported eating
behaviors, and plate
waste | 20 schools across
Nebraska (1980) | Children in grades
1-6 (n=2,351) | Randomized
experiment with
random
assignment at
the school level | Participation dummy | Analysis of covariance, using both children and classrooms as the unit of analysis |