
The following sections examine
selected approaches that are

commonly used by economists in
analyzing decisionmaking under
risk. The approaches discussed
here range from one of the sim-
plest (the “safety-first” approach)
to one of the more complex (the
use of “expected utility”).
“Certainty equivalence” also is dis-
cussed, which involves measuring
risk in terms of differences in
expected income. The use of these
different approaches allows
researchers to rank alternative
strategies, and to help producers
make optimal choices in different
situations.

TThhee  ““SSaaffeettyy--FFiirrsstt””  AApppprrooaacchh

The “safety-first” approach to risk
management applies if a decision-
maker first satisfies a preference
for safety (such as minimizing the
probability of bankruptcy) when
making choices as to the firm’s
activities. Only when the safety
first goal is met at a threshold
level can other goals (such as max-
imizing expected returns) be
addressed. Thus, attaining the
highest-priority goal serves as a
constraint on goals that have suc-
cessively lower priorities (Robison,
Barry, Kliebenstein, and Patrick).

Safety-first methods are particu-
larly applicable where survival of
an individual or business is the
paramount concern. However, in
most business risk management
situations, the use of safety-first
methods is somewhat arbitrary
because no single goal is clearly
dominant.

The safety-first criteria can be
specified in various ways in empir-
ical applications. One of the first
uses of this approach was devel-
oped in 1952, and involves choos-
ing the set of activities with the
smallest probability of yielding an
expected return (Y) below a speci-
fied disaster level of return (Y-min)
(Roy). To aid in understanding the
various safety-first criteria, appen-
dix table 2 shows the expected
income and the probability of
income less than the disaster level,
which is assumed to be $50,000,
for three hypothetical strategies,
A, B, and C. For strategy B, for
example, the expected return is
$500,000, and the probability that
returns under this strategy will
fall below $50,000 is 4 percent.
Strategy A has the highest expect-
ed return and the highest risk
among the strategies illustrated,
while strategy C has the lowest
expected return and lowest risk.
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AAppppeennddiixx  22::  AAnnaallyyttiiccaall  TToooollss  ffoorr  AAsssseessssiinngg
tthhee  EEffffeeccttiivveenneessss  ooff  RRiisskk  MMaannaaggeemmeenntt
SSttrraatteeggiieess

Different modeling approaches are used by economists to
capture decisionmaking in risky situations. These
approaches are based on the idea that each risky strategy
offers farmers a different probability distribution of income,
and that determining the best strategy involves describing
the different distributions and developing rules to choose
among them. These approaches differ, however, in the ways
in which they incorporate risk attitudes, and in the degree
of flexibility allowed in specifying risk-return trade-offs.



Under Roy’s safety-first criteria,
the optimal activity choice occurs
where the probability of expected
return falling below the $50,000
threshold is minimized. Strategy
C, which has the lowest probability
of disaster, best meets this criteria.
When returns are normally dis-
tributed, the solution occurs where
the disaster level (Y-min) is the
greatest number of standard devi-
ations away from the expected
income. Roy’s criteria can be
expressed mathematically as:

Minimize Prob (Y < Y-min) 

A second type of approach, intro-
duced by Telser in 1955, assumes
that the decisionmaker maximizes
expected returns, E(Y), subject to
the constraint that the probability
of a return less than or equal to a
specified minimum disaster level
(Y-min) does not exceed a given
probability (P). Mathematically,
Telser’s approach is expressed as:

Maximize E(Y)
subject to: Prob (Y < Y-min) ≤ P

To apply the Telser criterion to the
example in appendix table 2, sup-
pose that the critical probability is
4 percent. Then, the Telser criteri-
on would choose strategy B, which
maximizes expected income among
those strategies for which P is not
greater than 4 percent. Alter-
natively, if the critical probability
were 3 percent, then strategy C
would be selected, while if it were
5 percent, strategy A would be
selected. This example illustrates
that safety-first results can be
quite sensitive to initial assump-

tions about what constitutes a crit-
ical loss.

The topics that have been
addressed by these various types
of safety-first criteria vary widely.
They include: optimal hedging
(Telser), dynamic cropping deci-
sions in southeastern Washington
(Van Kooten, Young, and
Krautkraemer), farm extension
programs (Musser, Ohannesian,
and Benson), and attitudes toward
risk regarding fertilizer applica-
tions among peasants in Mexico
(Moscardi and de Janvry).

The safety-first approach has both
advantages and disadvantages. It
does not require the specification
of a farmer’s risk aversion coeffi-
cient (see accompanying box on
risk aversion, p. 119), and it is not
limited to specific distributional
assumptions, other than that utili-
ty increases with returns (subject
to varying constraints depending
on the specification) (appendix
table 3). As a result, it is straight-
forward to use. On the downside,
however, it is limited in its ability
to address producers’ varying lev-
els of aversion to risk (although
the threshold probability can serve
as a proxy for risk aversion), and
difficulties can also arise in choos-
ing the critical cutoff level for dis-
aster returns. In addition, any out-
come below the cutoff is treated as
equivalent to any other. In reality,
observations far below the cutoff
disaster level are more adverse to
the farmer than those that are
nearer the cutoff point.
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Appendix table 2—Comparison of Roy’s safety-first approach with Telser’s 
safety-first approach

Strategy Expected Minimum disaster Probability of falling
income return below minimum

E(Y) (Y-min) disaster return (P)

Dollars Percent

A 1,000,000 50,000 5
B 500,000 50,000 4
C 200,000 50,000 3

Source: Hypothetical example developed by ERS.



TThhee  ““EE--VV””  AApppprrooaacchh  aanndd  
QQuuaaddrraattiicc  PPrrooggrraammmmiinngg

A classic problem in risk analysis
involves determining an optimal
allocation of resources across an
array of risky alternatives. The
problem was first solved by
Markowitz in the context of select-
ing optimal stock portfolios. His
solution was to find the set of allo-
cations that maximize expected
total return for different levels of
variance of total return. This is
called the “expected value-variance
(or E-V) efficient” set or frontier.
The heavy line in appendix figure

5 represents an E-V efficient fron-
tier. On this frontier, expected
return can be increased only by
accepting a larger variance of
return. The optimal portfolio is
presumed to come from this fron-
tier and depends on the decision-
maker’s preference tradeoffs
between expected return and vari-
ance of return.33
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Appendix table 3—Methods for ranking probability distributions, and 
assumptions and parameters required for each

Method Assumptions required Parameters required
about utility to use method

Roy’s safety-first Increases with prob (Y > L) Prob (Y < L)

Telser’s safety-first Increases linearly with Y if
prob (Y < L) < P, is zero otherwise E(Y) and prob (Y < L)

E-V efficiency Increases with Y at a decreasing
rate plus normality or quadratic utility E(Y) and Var(Y)

1st degree 
stochastic dominance Increases with Y Complete distribution of Y

2nd degree Increases with Y at a 
stochastic dominance decreasing rate Complete distribution of Y

Expected utility and Complete distribution of Y
certainty equivalents Known function of Y and utility function
Note: Y = income; E(Y) = expected income; L = critical level of income; P = critical probability.

Source: Compiled by ERS.

33The E-V efficient set will include the
portfolio that maximizes expected utility if
the decisionmaker's utility function is
quadratic or returns on all activities are
normally distributed. See subsequent sec-
tion on "The Expected Utility Approach."

Source: Hypothetical example developed by ERS.

Indifference curves

Optimum

E-V efficient frontier

Expected income

Variance of income

Appendix figure 5

Example E-V efficient frontier and indifference curves



The E-V efficiency criterion can be
used in allocating a farm’s
resources among alternative risky
enterprises. A risk-averse farmer
desires high expected return and
low variance of return, which
involves moving upward and/or to
the left in the figure. The optimal
combination of activities for the
farmer occurs at the point on the
E-V frontier that provides the pre-
ferred combination of expected
return and variance of return. To
illustrate the farmer’s preferences,
three indifference curves are
shown as dashed lines. Each con-
nects combinations of risk and
expected return that are equally
desirable to the producer. The opti-
mal point on the E-V frontier is
the point that touches the highest
attainable indifference curve.

This approach has on many occa-
sions been applied to farming deci-
sions, particularly to decisions
about enterprise choice and diver-
sification. E-V efficient combina-
tions of crop and livestock enter-
prises can be identified and the
combination that offers the pre-
ferred mix of expected return and
variability of returns can be cho-
sen. Determining E-V efficient
combinations requires estimates of
the variances in returns and the
correlations of returns for those
enterprises under consideration, as
well as estimates of expected
returns for those enterprises.

The attractiveness of E-V analysis
is that it leads to relatively conven-
ient solutions using quadratic pro-
gramming. The exact formulation
of the problem can vary. One
approach is to maximize a quadrat-
ic function of activity levels subject
to linear constraints as follows:

subject to:

where:
xi = the level of the ith
activity;

ui = the expected return
per unit of the ith activity;

λ= the risk-return trade-
off;

σij = the covariance of
return on activities i and j;

aji = coefficients in m lin-
ear constraints on the
activity levels.

bj = levels of the linear
constraints.

To trace out the E-V frontier, the
quadratic programming problem
must be solved parametrically as
the risk aversion coefficient, λ,
varies from 0 to ∞. This is a rather
complicated problem, but computer
algorithms are available. If the
farmer is risk neutral (λ=0), the
problem collapses to a an income
maximization problem, which can
be solved with ordinary linear pro-
gramming. As risk becomes
increasingly important, the risk
aversion coefficient increases and
the E-V portfolio becomes increas-
ingly diversified (Anderson, Dillon,
and Hardaker). Other factors, such
as limitations imposed by resource
constraints, may also lead to a
diversified portfolio.

The quadratic programming
approach has been applied to farm
enterprise selection by many
researchers. The first application,
for example, involved the evalua-
tion of four production activities
and several resource constraints
on a representative farm in east-
ern North Carolina (Freund).
Quadratic risk programming has
since been applied to many other
evaluations of optimal farm enter-
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prise choice, including studies by
Barry and Willman, and Musser
and Stamoulis.34

The use of the E-V approach has
both advantages and disadvan-
tages. As in the case of “safety-
first” analysis, E-V analyses may
or may not include an explicit
measure of the producer’s risk
aversion (as illustrated in the
example above). E-V analysis is
limited, however, in that it
assumes that the producer has an
outcome distribution that is nor-
mal35 or, alternatively, a utility
function (which expresses risk
preferences) that is quadratic. In
addition, the farmer is assumed to
always prefer more (rather than
less) of the variable in question
(such as income), and is assumed
universally not risk preferring
with respect to that variable
(Hardaker, Huirne, and Anderson).
As with various approaches to risk
analysis, estimation of the vari-
ance-covariance matrix can pres-
ent methodological pitfalls (Mapp
and Helmers).

TThhee  SSttoocchhaassttiicc  DDoommiinnaannccee
AApppprrooaacchh

Unlike E-V analysis, which is
based on the mean and variance of

a distribution, stochastic domi-
nance involves comparing points
on two or more entire distribu-
tions. That is, when stochastic
dominance is used, alternatives
are compared in terms of the full
distributions of outcomes. Because
comparisons must be made at each
specified point along each distribu-
tion in a pairwise fashion, the con-
ceptual complexity and computa-
tional task associated with this
approach are greater than when E-
V analysis is used (Hardaker,
Huirne, and Anderson).

The first concept of stochastic effi-
ciency was formalized in the early
1960’s, and is known as “first-
degree” stochastic dominance. This
approach rests on the notion that
decisionmakers prefer more of a
given variable (such as income) to
less. Using an example, suppose
there are three plans, A, B, and C,
each having a probability distribu-
tion of income outcomes, “x.” The
cumulative density functions
(CDFs) associated with the plans
are FA (x), FB (x), and FC (x),
respectively, as shown in appendix
figure 6. The CDFs reflect the
“accumulated” area under the
probability density function (PDF)
at each level of income for each
plan. At the extreme right side of
the chart, the entire PDF is
summed, and the probability of
realizing an income for any of the
plans that is equal to or less than
the amount designated on the axis
is 1.00.

For one plan to dominate another
in the first-degree sense, the CDF
for the first plan must nowhere be
higher than the CDF for the sec-
ond plan, and it must lie below the
CDF for the second plan at some
point. Mathematically, first degree
stochastic dominance (FSD) can be
expressed, for two representative
plans A and B, as:

FA (x) ≤ FB (x), for all levels of x

Economic Research Service, USDA Managing Risk in Farming: Concepts, Research, and Analysis
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34Other risk programming methods are
available. MOTAD programming, for exam-
ple, minimizes the mean absolute deviation
in net income, which simplifies the problem
to one of linear programming (Hazell).
Target MOTAD, developed in 1983, mini-
mizes deviations from a target level of
income (Tauer). Discrete stochastic pro-
gramming can also be used to determine
efficient enterprise choices for farmers. For
a discussion of the advantages and disad-
vantages of these approaches, as well as
examples, see Hardaker, Huirne, and
Anderson; Musser, Mapp, and Barry; Mapp,
Hardin, Walker, and Persaud; and Walker
and Helmers.

35The normality assumption may be
reasonable, particularly if the number of
risky prospects is not too small and the
risky prospects are diverse (Anderson,
Dillon, and Hardaker). In addition, several
studies have concluded that the E-V
approach is quite robust to violations of the
normality assumption (Levy and
Markowitz; Kroll, Levy, and Markowitz).



In appendix figure 6, FC (x) domi-
nates FA (x) in the first-degree
sense, meaning that the probabili-
ty of exceeding any given level of
income is greater under plan C
than plan A, and that plan A can-
not be a member of the first-
degree stochastic dominant (FSD)
set. Because the CDF for plan B
crosses both plans A and C, plan B
does not dominate, and is not dom-
inated by, either A or C in the first
degree sense (Hardaker, Huirne,
and Anderson).

Second-degree stochastic domi-
nance (SSD) is applicable if the
decisionmaker is risk averse and
prefers higher incomes to lower
incomes. In contrast to first-degree
stochastic dominance, SSD
involves the comparison of areas
under the CDFs for various plans,
and, in general, has more discrimi-
natory power than does FSD (King
and Robison). For a representative
plan, A, to be SSD over another
plan, B, requires that:

In appendix figure 6, for example,
note that the accumulated area
under FB(x) is less than under
FA(x) at all levels of income. Thus,
B exhibits SSD over A. C also
exhibits SSD over A. However, C
does not exhibit SSD over B
because there is a range in the
lower tail where the accumulated
area under C exceeds that under
B. This example illustrates the
stronger discriminatory power of
SSD compared to FSD while show-
ing that SSD does not discriminate
among all distributions.

As with other approaches to risk
analysis, the use of stochastic dom-
inance methods has both pros and
cons. Although it provides a rigor-
ous assessment, the number of
efficient sets may remain unduly
large. SSD is more discriminating
than FSD, but nearly one-half of
randomly generated farm plans in
one study, for example, were found
to be within the SSD set (King and
Robison). The assumption of risk
aversion required by SSD may not
always hold, and the pairwise com-
parisons that are necessary in
determining the efficient set can
be computationally burdensome.
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Source: Hypothetical example developed by ERS.
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Different Approaches Can Be Used 
to Estimate Risk Aversion

To determine a farmer’s best risk management strategy, information is
needed about his or her risk preferences among the different income
distributions generated by those alternative strategies. Individuals
who accept a lower average return to reduce the variability of returns
are said to be risk averse. Many individuals are believed to be risk
averse, as evidenced by the widespread demand for automobile, prop-
erty, and health insurance. Premium costs for these products general-
ly exceed expected indemnities due to administrative costs, but buyers
often find the price acceptable to mitigate potentially disastrous out-
comes.

While risk aversion is acknowledged as widespread, the degree of risk
aversion varies among individuals and is difficult to ascertain. Two
general approaches typically have been used in empirical analyses.
The first approach measures risk aversion directly by confronting the
decisionmaker with a choice (either actual or hypothetical) among sev-
eral alternatives, at least some of which involve risk (Newbery and
Stiglitz). Such approaches have been used to determine risk aversion
among farmers in northeast Brazil (Dillon and Scandizzo) and rural
India (Binswanger), among others.

Measuring risk preferences directly can, however, lead to unstable
results. Interview methods, in particular, are faced with the inevitable
problem that individuals may not be able to reveal their attitudes
toward decisions they have never taken or seriously contemplated
(Binswanger). In addition, such studies have typically focused on a
small-scale basis. Recently, work has been undertaken to measure
farmers’ risk attitudes on a large-scale basis, using rating scales of risk
management questions to ascertain farmers’ risk preferences (Bard
and Barry).

The second approach does not involve interviews with decisionmakers
or experimental determination of attitudes toward risk. Rather, this
category involves: 1) focusing on testing hypotheses econometrically
regarding risk preference structure; or 2) directly estimating utility
functional forms or risk aversion coefficients using data on actual firm
choices (Saha, Shumway, and Talpaz; Antle; Love and Buccola).
Several studies have used this second category, with estimates of rela-
tive risk aversion ranging widely.

More technically, measures of either “absolute” or “relative” risk aver-
sion can be used to quantify an individual’s attitude toward risk. Both
measure the curvature of the utility function, and represent the degree
to which the satisfaction obtained from an additional unit of income
declines as income increases. The units of measurement must be con-
sidered in interpreting estimates of absolute risk aversion, whereas
relative risk aversion is unit free.

Varying estimates of relative and absolute risk aversion result from
different approaches and data sets. Researchers generally agree that a
reasonable relative risk aversion coefficient, for example, is in the
neighborhood of 2.0, or “rather risk averse.” Relatively risk-averse
farmers would be likely to maintain substantial financial reserves as
protection against income shortfalls, while those who are less risk
averse would be inclined to borrow to near their limit in order to
increase their expected incomes (Hardaker, Huirne, and Anderson).



Further, once the efficient set of
plans is determined, identification
of the optimal choice within this
set depends on knowing more
about a decisionmaker’s preference
than merely that an unquantified
aversion to risk exists (Anderson,
Dillon, and Hardaker).

TThhee  EExxppeecctteedd  UUttiilliittyy  AApppprrooaacchh

If a decisionmaker’s risk prefer-
ences can be described mathemati-
cally and the probability distribu-
tions associated with each risky
alternative are known, his or her
choice among the risky alternatives
can be optimized directly. Expected
utility provides a convenient way to
represent risk preferences. The
basic idea is that decisionmakers
maximize expected utility, where
utility is an indicator of satisfaction
measured in arbitrary units. Utility
increases less than proportionately
with income for decisionmakers
who are risk averse. In other words,
utility is an increasing, but down-
ward bending, function of income
for such persons (Anderson, Dillon,
and Hardaker; Robison and Barry;
Laffont; Takayama).

Many different specifications can
be used to capture the curvature of
the utility function, and each rep-
resents the degree to which the
satisfaction obtained from an addi-
tional unit of income changes as
income increases. One such utility
function specification can be
expressed as:

U = 100 - (1,000,000/Y)

As can be seen from this equation,
an increase in Y, say from $20,000
to $30,000 (50 percent), results in
an increase in utility from 50 to 67
(32 percent). This utility function
exhibits constant relative risk
aversion, which means that the
degree of risk aversion decreases
with income. The coefficient of rel-
ative risk aversion in this example
is 2, which is considered by many
economists to be about average.

To illustrate the use of expected
utility, suppose that Farmer Smith,
whose utility function is specified
as above, is choosing between two
strategies: (1) continuing to farm,
and (2) taking a job in town. Under
the first strategy, Smith has an 80-
percent chance of a net income of
$70,000 and a 20-percent chance of
a net income of $20,000. Working
in town provides a sure income of
$55,000. The expected income and
standard deviation in income for
each strategy are shown in appen-
dix table 4. Neither strategy domi-
nates the other from the stand-
point of E-V efficiency because the
first strategy has the highest
expected income, while the second
has the lowest standard deviation
in income (zero in this case).

Using Smith’s utility function, the
resulting utilities for each level of
income shown in the table are:

Income Utility

$20,000 50.0

$55,000 81.8

$70,000 85.7

Managing Risk in Farming: Concepts, Research, and Analysis Economic Research Service, USDA
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Appendix table 4—Expected income and standard deviation of income under
two strategies available to Farmer Smith

Standard
Probabilities of expected incomes Expected deviation of

Strategy $20,000 $55,000 $70,000 income income

Percent Dollars

1 0.2 0.0 0.8 60,000 20,000
2 0.0 1.0 0.0 55,000 0

Source: Hypothetical example developed by ERS.
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Certainty Equivalence Allows Estimation of Risk in
Dollars of Expected Income 

Decisionmakers often would like the losses from risk or the gains
from risk reduction to be measured in terms of dollars of expected
income. A sure outcome that an individual finds equally desirable to
a given risky prospect is called a certainty equivalent outcome
(Anderson, Dillon, and Hardaker; Laffont). Knowing certainty equiva-
lent outcomes allows one not only to rank risky alternatives, but also
to estimate the cost of risk, or the premium that the individual would
pay to avoid the risk. Certainty equivalence simultaneously accounts
for the probabilities of the risky prospects and the preferences for the
consequences (Anderson, Dillon, and Hardaker). Because decision-
makers seldom have similar attitudes toward risk, certainty equiva-
lents vary among individuals, even for the same risky prospect
(Hardaker, Huirne, and Anderson).

Certainty equivalents can be calculated when E-V analysis is used or
when the utility function is known and expected utility analysis is
used. In the latter case, a certainty equivalent can be calculated by
first calculating expected utility and then finding the sure outcome
that would provide equal utility. This involves applying the inverse of
the utility function to expected utility. For the utility function above
this gives:

CE(Y) = 1,000,000 / [100 - E(U)]

Applying this inverse function to the expected utilities calculated in
the accompanying table gives the estimates shown in the accompany-
ing table. These results, shown in the last column, indicate that the
first strategy yields a certainty equivalent income of $46,667, com-
pared to an expected income of $60,000. In other words, the cost of
uncertainty in farming for Smith is $60,000 - $46,667 = $13,333.
Thus, Smith prefers the second strategy, which gives a certainty
equivalent income of $55,000, and is $8,333 higher than obtained if
he had chosen the first strategy.

Certainty equivalent estimates must be used with care, primarily
because they tend to convey an unwarranted sense of precision. They
must be taken as rather rough approximations, and depend heavily
on how accurately the underlying utility functions and probability
distributions are estimated. Utility functions, in particular, differ
markedly among individuals, are not directly observable, and are
likely estimated with substantial errors in most cases.

Certainty equivalent income under two strategies for farmer Smith
Expected Certainty equivalent

Strategy utility income

Dollars

1 78.6 46,667

2 81.8 55,000
Source: Hypothetical example developed by ERS.



Expected utility under each strat-
egy is calculated by weighting
each utility level by its probability.
The results for the two strategies,
shown in appendix table 5, indi-
cate that the second strategy
yields a slightly higher expected
utility and is therefore preferred.
Expected utility results can also
be used to estimate certainty
equivalents (see accompanying
box, p. 121).

The use of expected utility has
both advantages and disadvan-
tages. One advantage is that this

approach is quite generalizable,
allowing a wide choice of utility
functions and probability distribu-
tions. Unlike stochastic dominance
and E-V efficiency criteria, which
typically leave some alternatives
unranked, expected utility general-
ly ranks all alternatives. The
major drawback of the approach is
that utility functions are difficult
to estimate and known only
approximately, at best. Moreover, it
assumes that decisionmakers
exhibit a high level of rationality,
which does not always seem to be
the case.
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Appendix table 5—Example calculation of expected utility under two strategies
for farmer Smith

Probabilities of expected utilities Expected
Strategy 50.0 81.8 85.7 utility

Probability

1 0.2 0.0 0.8 78.6
2 0 1.0 0 81.8

Source: Hypothetical example developed by ERS.


